U-tiling: UQC6063
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc2444 |
*222222 |
(7,8,2) |
{4,4,3,4,4,4,4} |
{5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc8258
|
|
Pmmm |
47 |
orthorhombic |
{3,4,3,4,4,4,4} |
18 |
(7,8) |
G
|
False
|
|
sqc8318
|
|
I212121 |
24 |
orthorhombic |
{4,4,3,4,4,4,4} |
18 |
(7,9) |
D
|
False
|
|
sqc2248
|
|
P222 |
16 |
orthorhombic |
{4,3,4,4,4,4,4} |
9 |
(7,8) |
Topological data
Vertex degrees | {4,4,3,4,4,4,4} |
2D vertex symbol | {5.5.5.5}{5.6.6.5}{5.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.6.6} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<50.1:136:18 3 5 7 9 11 13 15 17 20 22 24 26 28 30 32 34 52 37 39 41 43 45 47 49 51 54 56 58 60 62 64 66 68 86 71 73 75 77 79 81 83 85 88 90 92 94 96 98 100 102 120 105 107 109 111 113 115 117 119 122 124 126 128 130 132 134 136,2 4 22 8 17 10 12 14 16 19 21 25 34 27 29 31 33 36 38 56 42 51 44 46 48 50 53 55 59 68 61 63 65 67 70 72 90 76 85 78 80 82 84 87 89 93 102 95 97 99 101 104 106 124 110 119 112 114 116 118 121 123 127 136 129 131 133 135,35 70 71 6 7 76 77 27 28 46 47 82 83 33 34 52 87 88 23 24 93 94 63 64 99 100 104 105 40 41 110 111 61 62 116 117 67 68 121 122 57 58 127 128 133 134 103 74 75 95 96 114 115 101 102 120 91 92 131 132 108 109 129 130 135 136 125 126:5 6 6 5 6 6 5 6 6 5 6 6,4 4 3 4 4 4 4 4 4 4 4 3 4 4 4 3 4 3> {(2, 60): 'tau2^-1*t3^-1', (2, 61): 'tau2^-1*t3^-1', (2, 62): 'tau2^-1*t1', (2, 63): 'tau2^-1*t1', (2, 48): 't3*tau1^-1', (1, 123): 't1^-1*tau3^-1*t2', (2, 45): 't3', (2, 46): 't3', (2, 47): 't3*tau1^-1', (2, 101): 'tau3^-1*t2', (2, 30): 'tau3', (2, 31): 'tau3', (2, 24): 't1^-1', (2, 25): 't1^-1', (2, 26): 't1^-1', (2, 27): 't1^-1', (2, 18): 't1^-1', (2, 19): 't1^-1', (1, 72): 't2^-1*tau3', (2, 14): 't2', (2, 132): 't1^-1*tau3^-1*t2*tau1*t3^-1', (2, 133): 't1^-1*tau3^-1*t2*tau1*t3^-1', (2, 134): 't1^-1*tau3^-1*t2', (2, 135): 't1^-1*tau3^-1*t2', (2, 128): 'tau2^-1*t3^-1', (2, 129): 'tau2^-1*t3^-1', (2, 131): 'tau2^-1*t3^-1*tau1*t2', (2, 119): 't1^-1', (0, 119): 't1^-1*tau3^-1*t2', (2, 114): 'tau1*t2', (2, 100): 'tau3^-1*t2', (2, 13): 't2', (2, 96): 't2^-1*tau1^-1*t3*tau2', (0, 85): 'tau3^-1*t2', (2, 79): 't2^-1*tau1^-1'}