| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (2,5,3) |
| Vertex degrees | {6,6} |
| 2D vertex symbol | {4.4.3.3.4.4}{4.4.3.4.4.3} |
| Delaney-Dress Symbol | <1049.2:9:1 2 3 5 7 8 9,2 4 9 8 7,1 3 6 7 8 9:4 4 3,6 6> |
| Dual net | hqc1115 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc2631 | Fmmm | 69 | orthorhombic | {6,6} | 6 | (2,5) | |
|
sqc2633 | Fmmm | 69 | orthorhombic | {6,6} | 6 | (2,5) | |
|
sqc9031 | P4/mmm | 123 | tetragonal | {6,6} | 12 | (2,5) | |
|
sqc8444 | I4122 | 98 | tetragonal | {6,6} | 12 | (2,6) | |
|
sqc8450 | I4122 | 98 | tetragonal | {6,6} | 12 | (2,6) | |
|
sqc8623 | I4122 | 98 | tetragonal | {6,6} | 12 | (2,6) | |
|
sqc8670 | Fddd | 70 | orthorhombic | {6,6} | 12 | (2,6) | |
|
sqc8676 | Fddd | 70 | orthorhombic | {6,6} | 12 | (2,6) | |
|
sqc8689 | Fddd | 70 | orthorhombic | {6,6} | 12 | (2,6) | |
|
sqc8693 | Fddd | 70 | orthorhombic | {6,6} | 12 | (2,6) | |
|
sqc8694 | Fddd | 70 | orthorhombic | {6,6} | 12 | (2,6) | |
|
sqc8873 | I4122 | 98 | tetragonal | {6,6} | 12 | (2,6) | |
|
sqc9037 | I4122 | 98 | tetragonal | {6,6} | 12 | (2,6) | |
|
sqc247 | btu | Pmmm | 47 | orthorhombic | {6,6} | 3 | (2,5) |
|
sqc2416 | P4222 | 93 | tetragonal | {6,6} | 6 | (2,5) | |
|
sqc2462 | P4222 | 93 | tetragonal | {6,6} | 6 | (2,5) | |
|
sqc2618 | P4222 | 93 | tetragonal | {6,6} | 6 | (2,5) | |
|
sqc2632 | Cmma | 67 | orthorhombic | {6,6} | 6 | (2,5) | |
|
sqc2665 | P4222 | 93 | tetragonal | {6,6} | 6 | (2,5) | |
|
sqc2675 | Cmma | 67 | orthorhombic | {6,6} | 6 | (2,5) | |
|
sqc2699 | P4222 | 93 | tetragonal | {6,6} | 6 | (2,5) | |
|
sqc2778 | Cmma | 67 | orthorhombic | {6,6} | 6 | (2,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC1215 | *22222a | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc8274
|
sqc8450
|
sqc2416
|
![]() |
UQC1216 | *22222a | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc7838
|
sqc8444
|
sqc2618
|
![]() |
UQC1217 | *22222a | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc7611
|
sqc8623
|
sqc2665
|
![]() |
UQC1218 | *22222b | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc2126
|
sqc8670
|
sqc2675
|
![]() |
UQC1219 | *22222a | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc9031
|
sqc9037
|
sqc2699
|
![]() |
UQC1220 | *22222b | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc2272
|
sqc8676
|
sqc2778
|
![]() |
UQC1221 | *22222b | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc2633
|
sqc8693
|
sqc247
|
![]() |
UQC1222 | *22222b | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc247
|
sqc8689
|
sqc2632
|
![]() |
UQC1223 | *22222b | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc2631
|
sqc8694
|
sqc247
|
![]() |
UQC1224 | *22222a | (2,5,3) | {6,6} | {4.4.3.3.4.4}{4.4.3.4.4.3} |
sqc8328
|
sqc8873
|
sqc2462
|