h-net: hqc1049


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{6,6}
2D vertex symbol {4.4.3.3.4.4}{4.4.3.4.4.3}
Delaney-Dress Symbol <1049.2:9:1 2 3 5 7 8 9,2 4 9 8 7,1 3 6 7 8 9:4 4 3,6 6>
Dual net hqc1115

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2631 Fmmm 69 orthorhombic {6,6} 6 (2,5)
Full image sqc2633 Fmmm 69 orthorhombic {6,6} 6 (2,5)
Full image sqc9031 P4/mmm 123 tetragonal {6,6} 12 (2,5)
Full image sqc8444 I4122 98 tetragonal {6,6} 12 (2,6)
Full image sqc8450 I4122 98 tetragonal {6,6} 12 (2,6)
Full image sqc8623 I4122 98 tetragonal {6,6} 12 (2,6)
Full image sqc8670 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8676 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8689 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8693 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8694 Fddd 70 orthorhombic {6,6} 12 (2,6)
Full image sqc8873 I4122 98 tetragonal {6,6} 12 (2,6)
Full image sqc9037 I4122 98 tetragonal {6,6} 12 (2,6)
Full image sqc247 btu Pmmm 47 orthorhombic {6,6} 3 (2,5)
Full image sqc2416 P4222 93 tetragonal {6,6} 6 (2,5)
Full image sqc2462 P4222 93 tetragonal {6,6} 6 (2,5)
Full image sqc2618 P4222 93 tetragonal {6,6} 6 (2,5)
Full image sqc2632 Cmma 67 orthorhombic {6,6} 6 (2,5)
Full image sqc2665 P4222 93 tetragonal {6,6} 6 (2,5)
Full image sqc2675 Cmma 67 orthorhombic {6,6} 6 (2,5)
Full image sqc2699 P4222 93 tetragonal {6,6} 6 (2,5)
Full image sqc2778 Cmma 67 orthorhombic {6,6} 6 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1215 *22222a (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc8274 Snet sqc8450 Snet sqc2416
Tiling details UQC1216 *22222a (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc7838 Snet sqc8444 Snet sqc2618
Tiling details UQC1217 *22222a (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc7611 Snet sqc8623 Snet sqc2665
Tiling details UQC1218 *22222b (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc2126 Snet sqc8670 Snet sqc2675
Tiling details UQC1219 *22222a (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc9031 Snet sqc9037 Snet sqc2699
Tiling details UQC1220 *22222b (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc2272 Snet sqc8676 Snet sqc2778
Tiling details UQC1221 *22222b (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc2633 Snet sqc8693 Snet sqc247
Tiling details UQC1222 *22222b (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc247 Snet sqc8689 Snet sqc2632
Tiling details UQC1223 *22222b (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc2631 Snet sqc8694 Snet sqc247
Tiling details UQC1224 *22222a (2,5,3) {6,6} {4.4.3.3.4.4}{4.4.3.4.4.3} Snet sqc8328 Snet sqc8873 Snet sqc2462

Symmetry-lowered hyperbolic tilings