h-net: hqc1050


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{12,3}
2D vertex symbol {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3}
Delaney-Dress Symbol <1050.2:9:1 2 3 5 7 8 9,2 4 9 8 7,1 3 6 7 8 9:4 4 3,12 3>
Dual net hqc1118

Derived s-nets

s-nets with faithful topology

18 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc8392 I4122 98 tetragonal {12,3} 12 (2,6)
Full image sqc8394 I4122 98 tetragonal {12,3} 12 (2,6)
Full image sqc8397 I4122 98 tetragonal {12,3} 12 (2,6)
Full image sqc8408 I4122 98 tetragonal {12,3} 12 (2,6)
Full image sqc8474 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8475 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8522 I4122 98 tetragonal {12,3} 12 (2,6)
Full image sqc8523 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8527 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc8567 Fddd 70 orthorhombic {12,3} 12 (2,6)
Full image sqc190 Pmmm 47 orthorhombic {12,3} 3 (2,5)
Full image sqc2295 P42/mmc 131 tetragonal {12,3} 6 (2,5)
Full image sqc2300 P4222 93 tetragonal {3,12} 6 (2,5)
Full image sqc2317 P4222 93 tetragonal {3,12} 6 (2,5)
Full image sqc2520 P4222 93 tetragonal {12,3} 6 (2,5)
Full image sqc2523 Cmma 67 orthorhombic {12,3} 6 (2,5)
Full image sqc2529 P4222 93 tetragonal {12,3} 6 (2,5)
Full image sqc2542 Cmma 67 orthorhombic {12,3} 6 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1225 *22222a (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} No s‑net Snet sqc8397 Snet sqc2295
Tiling details UQC1226 *22222a (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} No s‑net Snet sqc8392 Snet sqc2520
Tiling details UQC1227 *22222a (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc1623 Snet sqc8522 Snet sqc2317
Tiling details UQC1228 *22222b (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc102 Snet sqc8523 Snet sqc2523
Tiling details UQC1229 *22222b (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} No s‑net Snet sqc8475 Snet sqc190
Tiling details UQC1230 *22222b (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc2216 Snet sqc8527 Snet sqc102
Tiling details UQC1231 *22222b (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc2249 Snet sqc8567 Snet sqc102
Tiling details UQC1232 *22222a (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc7423 Snet sqc8408 Snet sqc2529
Tiling details UQC1233 *22222b (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc102 Snet sqc8474 Snet sqc2542
Tiling details UQC1234 *22222a (2,5,3) {12,3} {4.4.3.3.4.4.4.4.3.3.4.4}{4.4.3} Snet sqc7027 Snet sqc8394 Snet sqc2300

Symmetry-lowered hyperbolic tilings