h-net: hqc1052


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{6,3}
2D vertex symbol {4.4.6.6.4.4}{4.4.6}
Delaney-Dress Symbol <1052.2:9:1 2 3 5 7 8 9,2 4 9 8 7,1 3 6 7 8 9:4 4 6,6 3>
Dual net hqc1113

Derived s-nets

s-nets with faithful topology

26 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2477 P4/mmm 123 tetragonal {6,3} 8 (2,4)
Full image sqc2639 Fmmm 69 orthorhombic {6,3} 8 (2,5)
Full image sqc2641 Fmmm 69 orthorhombic {3,6} 8 (2,5)
Full image sqc2983 Fmmm 69 orthorhombic {6,3} 8 (2,5)
Full image sqc8440 P4/mmm 123 tetragonal {6,3} 16 (2,5)
Full image sqc9036 P4/mmm 123 tetragonal {6,3} 16 (2,5)
Full image sqc8447 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8582 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8613 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8681 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8706 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8711 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8877 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc8879 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc8881 Fddd 70 orthorhombic {6,3} 16 (2,6)
Full image sqc9041 I4122 98 tetragonal {6,3} 16 (2,6)
Full image sqc316 Fmmm 69 orthorhombic {3,6} 4 (2,4)
Full image sqc2446 P4222 93 tetragonal {3,6} 8 (2,5)
Full image sqc2621 P4222 93 tetragonal {3,6} 8 (2,5)
Full image sqc2640 Cmma 67 orthorhombic {3,6} 8 (2,5)
Full image sqc2666 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc2678 Cmma 67 orthorhombic {6,3} 8 (2,5)
Full image sqc2896 Cmma 67 orthorhombic {3,6} 8 (2,5)
Full image sqc2917 Cmma 67 orthorhombic {6,3} 8 (2,5)
Full image sqc2970 P4222 93 tetragonal {6,3} 8 (2,5)
Full image sqc2977 P4222 93 tetragonal {3,6} 8 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1239 *22222a (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc8440 Snet sqc8447 Snet sqc2446
Tiling details UQC1240 *22222b (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2154 Snet sqc8706 Snet sqc2678
Tiling details UQC1241 *22222a (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc7849 Snet sqc8582 Snet sqc2621
Tiling details UQC1242 *22222a (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc9036 Snet sqc9041 Snet sqc2977
Tiling details UQC1243 *22222b (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2983 Snet sqc8681 Snet sqc2896
Tiling details UQC1244 *22222b (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2983 Snet sqc8881 Snet sqc2640
Tiling details UQC1245 *22222b (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2639 Snet sqc8711 Snet sqc316
Tiling details UQC1246 *22222b (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2641 Snet sqc8879 Snet sqc2917
Tiling details UQC1247 *22222a (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc2477 Snet sqc8877 Snet sqc2970
Tiling details UQC1248 *22222a (2,5,3) {6,3} {4.4.6.6.4.4}{4.4.6} Snet sqc7846 Snet sqc8613 Snet sqc2666

Symmetry-lowered hyperbolic tilings