h-net: hqc1113


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{6,4,4}
2D vertex symbol {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6}
Delaney-Dress Symbol <1113.2:9:1 3 5 6 8 9,2 7 4 6 9,1 4 5 6 7 8 9:6 3,6 4 4>
Dual net hqc1052

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2776 Fmmm 69 orthorhombic {6,4,4} 8 (3,5)
Full image sqc2850 Fmmm 69 orthorhombic {4,6,4} 8 (3,5)
Full image sqc9004 P4/mmm 123 tetragonal {6,4,4} 16 (3,5)
Full image sqc8451 I4122 98 tetragonal {6,4,4} 16 (3,6)
Full image sqc8668 I4122 98 tetragonal {6,4,4} 16 (3,6)
Full image sqc8669 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8683 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8684 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8696 I4122 98 tetragonal {6,4,4} 16 (3,6)
Full image sqc8763 I4122 98 tetragonal {6,4,4} 16 (3,6)
Full image sqc8811 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8909 Fddd 70 orthorhombic {6,4,4} 16 (3,6)
Full image sqc8999 I4122 98 tetragonal {6,4,4} 16 (3,6)
Full image sqc268 Pmmm 47 orthorhombic {4,4,6} 4 (3,5)
Full image sqc2394 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2465 P4222 93 tetragonal {4,6,4} 8 (3,5)
Full image sqc2466 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2499 P4222 93 tetragonal {4,4,6} 8 (3,5)
Full image sqc2702 P42/mmc 131 tetragonal {6,4,4} 8 (3,5)
Full image sqc2864 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc2887 Cmma 67 orthorhombic {4,4,6} 8 (3,5)
Full image sqc3016 Cmma 67 orthorhombic {4,4,6} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3931 *22222a (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc8350 Snet sqc8668 Snet sqc2394
Tiling details UQC3932 *22222a (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc8359 Snet sqc8451 Snet sqc2466
Tiling details UQC3933 *22222b (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc2274 Snet sqc8669 Snet sqc2887
Tiling details UQC3934 *22222a (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc9004 Snet sqc8999 Snet sqc2702
Tiling details UQC3935 *22222b (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc2279 Snet sqc8684 Snet sqc2864
Tiling details UQC3936 *22222b (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc2850 Snet sqc8811 Snet sqc268
Tiling details UQC3937 *22222a (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc8348 Snet sqc8696 Snet sqc2465
Tiling details UQC3938 *22222b (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc2776 Snet sqc8683 Snet sqc268
Tiling details UQC3939 *22222a (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc8293 Snet sqc8763 Snet sqc2499
Tiling details UQC3940 *22222b (3,5,2) {6,4,4} {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} Snet sqc268 Snet sqc8909 Snet sqc3016

Symmetry-lowered hyperbolic tilings