Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (3,5,2) |
Vertex degrees | {6,4,4} |
2D vertex symbol | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} |
Delaney-Dress Symbol | <1113.2:9:1 3 5 6 8 9,2 7 4 6 9,1 4 5 6 7 8 9:6 3,6 4 4> |
Dual net | hqc1052 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc2776 | Fmmm | 69 | orthorhombic | {6,4,4} | 8 | (3,5) | ||
sqc2850 | Fmmm | 69 | orthorhombic | {4,6,4} | 8 | (3,5) | ||
sqc9004 | P4/mmm | 123 | tetragonal | {6,4,4} | 16 | (3,5) | ||
sqc8451 | I4122 | 98 | tetragonal | {6,4,4} | 16 | (3,6) | ||
sqc8668 | I4122 | 98 | tetragonal | {6,4,4} | 16 | (3,6) | ||
sqc8669 | Fddd | 70 | orthorhombic | {6,4,4} | 16 | (3,6) | ||
sqc8683 | Fddd | 70 | orthorhombic | {6,4,4} | 16 | (3,6) | ||
sqc8684 | Fddd | 70 | orthorhombic | {6,4,4} | 16 | (3,6) | ||
sqc8696 | I4122 | 98 | tetragonal | {6,4,4} | 16 | (3,6) | ||
sqc8763 | I4122 | 98 | tetragonal | {6,4,4} | 16 | (3,6) | ||
sqc8811 | Fddd | 70 | orthorhombic | {6,4,4} | 16 | (3,6) | ||
sqc8909 | Fddd | 70 | orthorhombic | {6,4,4} | 16 | (3,6) | ||
sqc8999 | I4122 | 98 | tetragonal | {6,4,4} | 16 | (3,6) | ||
sqc268 | Pmmm | 47 | orthorhombic | {4,4,6} | 4 | (3,5) | ||
sqc2394 | P4222 | 93 | tetragonal | {4,4,6} | 8 | (3,5) | ||
sqc2465 | P4222 | 93 | tetragonal | {4,6,4} | 8 | (3,5) | ||
sqc2466 | P4222 | 93 | tetragonal | {4,4,6} | 8 | (3,5) | ||
sqc2499 | P4222 | 93 | tetragonal | {4,4,6} | 8 | (3,5) | ||
sqc2702 | P42/mmc | 131 | tetragonal | {6,4,4} | 8 | (3,5) | ||
sqc2864 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) | ||
sqc2887 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) | ||
sqc3016 | Cmma | 67 | orthorhombic | {4,4,6} | 8 | (3,5) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3931 | *22222a | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc8350 | sqc8668 | sqc2394 | |
UQC3932 | *22222a | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc8359 | sqc8451 | sqc2466 | |
UQC3933 | *22222b | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc2274 | sqc8669 | sqc2887 | |
UQC3934 | *22222a | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc9004 | sqc8999 | sqc2702 | |
UQC3935 | *22222b | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc2279 | sqc8684 | sqc2864 | |
UQC3936 | *22222b | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc2850 | sqc8811 | sqc268 | |
UQC3937 | *22222a | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc8348 | sqc8696 | sqc2465 | |
UQC3938 | *22222b | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc2776 | sqc8683 | sqc268 | |
UQC3939 | *22222a | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc8293 | sqc8763 | sqc2499 | |
UQC3940 | *22222b | (3,5,2) | {6,4,4} | {6.3.6.6.3.6}{6.6.3.3}{6.6.6.6} | sqc268 | sqc8909 | sqc3016 |