| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,5,2) |
| Vertex degrees | {8,3,4} |
| 2D vertex symbol | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
| Delaney-Dress Symbol | <1103.2:9:1 3 5 6 8 9,2 3 6 7 9,1 4 5 6 7 8 9:3 6,8 3 4> |
| Dual net | hqc987 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc226 | Pmmm | 47 | orthorhombic | {3,8,4} | 4 | (3,5) | |
|
sqc2613 | Fmmm | 69 | orthorhombic | {4,3,8} | 8 | (3,5) | |
|
sqc8418 | I4122 | 98 | tetragonal | {8,3,4} | 16 | (3,6) | |
|
sqc8500 | Fddd | 70 | orthorhombic | {8,3,4} | 16 | (3,6) | |
|
sqc8501 | I4122 | 98 | tetragonal | {8,3,4} | 16 | (3,6) | |
|
sqc8631 | Fddd | 70 | orthorhombic | {8,3,4} | 16 | (3,6) | |
|
sqc8646 | I4122 | 98 | tetragonal | {8,3,4} | 16 | (3,6) | |
|
sqc8653 | I4122 | 98 | tetragonal | {8,3,4} | 16 | (3,6) | |
|
sqc8821 | Fddd | 70 | orthorhombic | {8,3,4} | 16 | (3,6) | |
|
sqc8822 | I4122 | 98 | tetragonal | {8,3,4} | 16 | (3,6) | |
|
sqc8823 | Fddd | 70 | orthorhombic | {8,3,4} | 16 | (3,6) | |
|
sqc8851 | Fddd | 70 | orthorhombic | {8,3,4} | 16 | (3,6) | |
|
sqc2297 | P4222 | 93 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2326 | P4222 | 93 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2372 | P42/mmc | 131 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2424 | P4222 | 93 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2502 | P4222 | 93 | tetragonal | {4,3,8} | 8 | (3,5) | |
|
sqc2563 | Cmma | 67 | orthorhombic | {3,4,8} | 8 | (3,5) | |
|
sqc2614 | Cmma | 67 | orthorhombic | {8,3,4} | 8 | (3,5) | |
|
sqc2872 | Cmma | 67 | orthorhombic | {4,3,8} | 8 | (3,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3865 | *22222a | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc2134
|
sqc8501
|
sqc2326
|
![]() |
UQC3866 | *22222a | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc8272
|
sqc8822
|
sqc2297
|
![]() |
UQC3867 | *22222a | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc8340
|
sqc8646
|
sqc2372
|
![]() |
UQC3868 | *22222a | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc8342
|
sqc8653
|
sqc2424
|
![]() |
UQC3869 | *22222b | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc226
|
sqc8851
|
sqc2614
|
![]() |
UQC3870 | *22222a | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc8267
|
sqc8418
|
sqc2502
|
![]() |
UQC3871 | *22222b | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc2255
|
sqc8631
|
sqc226
|
![]() |
UQC3872 | *22222b | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc2251
|
sqc8500
|
sqc2563
|
![]() |
UQC3873 | *22222b | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc2613
|
sqc8821
|
sqc226
|
![]() |
UQC3874 | *22222b | (3,5,2) | {8,3,4} | {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} |
sqc2253
|
sqc8823
|
sqc2872
|