h-net: hqc1103


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{8,3,4}
2D vertex symbol {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6}
Delaney-Dress Symbol <1103.2:9:1 3 5 6 8 9,2 3 6 7 9,1 4 5 6 7 8 9:3 6,8 3 4>
Dual net hqc987

Derived s-nets

s-nets with faithful topology

20 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc226 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
Full image sqc2613 Fmmm 69 orthorhombic {4,3,8} 8 (3,5)
Full image sqc8418 I4122 98 tetragonal {8,3,4} 16 (3,6)
Full image sqc8500 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8501 I4122 98 tetragonal {8,3,4} 16 (3,6)
Full image sqc8631 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8646 I4122 98 tetragonal {8,3,4} 16 (3,6)
Full image sqc8653 I4122 98 tetragonal {8,3,4} 16 (3,6)
Full image sqc8821 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8822 I4122 98 tetragonal {8,3,4} 16 (3,6)
Full image sqc8823 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc8851 Fddd 70 orthorhombic {8,3,4} 16 (3,6)
Full image sqc2297 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc2326 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc2372 P42/mmc 131 tetragonal {3,4,8} 8 (3,5)
Full image sqc2424 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc2502 P4222 93 tetragonal {4,3,8} 8 (3,5)
Full image sqc2563 Cmma 67 orthorhombic {3,4,8} 8 (3,5)
Full image sqc2614 Cmma 67 orthorhombic {8,3,4} 8 (3,5)
Full image sqc2872 Cmma 67 orthorhombic {4,3,8} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3865 *22222a (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc2134 Snet sqc8501 Snet sqc2326
Tiling details UQC3866 *22222a (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc8272 Snet sqc8822 Snet sqc2297
Tiling details UQC3867 *22222a (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc8340 Snet sqc8646 Snet sqc2372
Tiling details UQC3868 *22222a (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc8342 Snet sqc8653 Snet sqc2424
Tiling details UQC3869 *22222b (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc226 Snet sqc8851 Snet sqc2614
Tiling details UQC3870 *22222a (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc8267 Snet sqc8418 Snet sqc2502
Tiling details UQC3871 *22222b (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc2255 Snet sqc8631 Snet sqc226
Tiling details UQC3872 *22222b (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc2251 Snet sqc8500 Snet sqc2563
Tiling details UQC3873 *22222b (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc2613 Snet sqc8821 Snet sqc226
Tiling details UQC3874 *22222b (3,5,2) {8,3,4} {3.6.6.3.3.6.6.3}{3.6.6}{6.6.6.6} Snet sqc2253 Snet sqc8823 Snet sqc2872

Symmetry-lowered hyperbolic tilings