h-net: hqc1123


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,8,3}
2D vertex symbol {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4}
Delaney-Dress Symbol <1123.2:9:1 3 5 7 8 9,2 4 5 8 9,1 2 3 6 7 8 9:5 4,4 8 3>
Dual net hqc1043

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc260 Pmmm 47 orthorhombic {3,4,8} 4 (3,5)
Full image sqc2753 Fmmm 69 orthorhombic {8,3,4} 8 (3,5)
Full image sqc8559 I4122 98 tetragonal {4,8,3} 16 (3,6)
Full image sqc8753 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8756 I4122 98 tetragonal {4,8,3} 16 (3,6)
Full image sqc8773 I4122 98 tetragonal {4,8,3} 16 (3,6)
Full image sqc8776 I4122 98 tetragonal {4,8,3} 16 (3,6)
Full image sqc8781 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8782 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8863 I4122 98 tetragonal {4,8,3} 16 (3,6)
Full image sqc8864 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc8865 Fddd 70 orthorhombic {4,8,3} 16 (3,6)
Full image sqc2420 P4222 93 tetragonal {4,8,3} 8 (3,5)
Full image sqc2430 P4222 93 tetragonal {3,8,4} 8 (3,5)
Full image sqc2600 P4222 93 tetragonal {4,8,3} 8 (3,5)
Full image sqc2754 Cmma 67 orthorhombic {4,8,3} 8 (3,5)
Full image sqc2989 Cmma 67 orthorhombic {4,8,3} 8 (3,5)
Full image sqc14595 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc14596 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc14617 Cmma 67 orthorhombic {4,8,3} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3995 *22222a (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} No s‑net Snet sqc8559 Snet sqc14596
Tiling details UQC3996 *22222a (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc8327 Snet sqc8756 Snet sqc2600
Tiling details UQC3997 *22222b (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} No s‑net Snet sqc8753 Snet sqc14617
Tiling details UQC3998 *22222a (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc8344 Snet sqc8863 Snet sqc2420
Tiling details UQC3999 *22222b (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc260 Snet sqc8864 Snet sqc2754
Tiling details UQC4000 *22222b (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc2753 Snet sqc8782 Snet sqc260
Tiling details UQC4001 *22222b (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc2271 Snet sqc8865 Snet sqc260
Tiling details UQC4002 *22222a (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} No s‑net Snet sqc8773 Snet sqc14595
Tiling details UQC4003 *22222b (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc2275 Snet sqc8781 Snet sqc2989
Tiling details UQC4004 *22222a (3,5,2) {4,8,3} {5.5.5.5}{5.4.4.5.5.4.4.5}{5.4.4} Snet sqc8273 Snet sqc8776 Snet sqc2430

Symmetry-lowered hyperbolic tilings