h-net: hqc1710


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,4)
Vertex degrees{3,5}
2D vertex symbol {4.8.6}{6.8.4.4.8}
Delaney-Dress Symbol <1710.2:11:1 2 3 5 7 8 9 10 11,2 4 5 8 9 11,3 8 6 7 10 11:4 6 8 4,3 5>
Dual net hqc1848

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4418 Fmmm 69 orthorhombic {3,5} 12 (2,5)
Full image sqc10567 P4/mmm 123 tetragonal {5,3} 24 (2,5)
Full image sqc10156 I4122 98 tetragonal {5,3,3} 24 (3,6)
Full image sqc10306 I4122 98 tetragonal {5,3,3} 24 (3,6)
Full image sqc10309 I4122 98 tetragonal {5,3,3} 24 (3,6)
Full image sqc10310 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10311 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10315 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10316 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10432 Fddd 70 orthorhombic {5,3,3} 24 (3,6)
Full image sqc10562 I4122 98 tetragonal {5,3,3} 24 (3,6)
Full image sqc10564 I4122 98 tetragonal {5,3,3} 24 (3,6)
Full image sqc651 Pmmm 47 orthorhombic {5,3} 6 (2,5)
Full image sqc653 Pmmm 47 orthorhombic {3,5} 6 (2,5)
Full image sqc693 Pmmm 47 orthorhombic {3,5} 6 (2,5)
Full image sqc4160 P4222 93 tetragonal {3,5} 12 (2,5)
Full image sqc4322 P4222 93 tetragonal {3,5} 12 (2,5)
Full image sqc4324 P4222 93 tetragonal {5,3} 12 (2,5)
Full image sqc4417 Cmma 67 orthorhombic {3,5} 12 (2,5)
Full image sqc4419 Cmma 67 orthorhombic {3,5} 12 (2,5)
Full image sqc4617 P4222 93 tetragonal {5,3} 12 (2,5)
Full image sqc4618 P4222 93 tetragonal {5,3} 12 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2167 *22222a (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} No s‑net Snet sqc10156 Snet sqc4160
Tiling details UQC2168 *22222a (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc3853 Snet sqc10306 Snet sqc4322
Tiling details UQC2169 *22222a (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc9916 Snet sqc10309 Snet sqc4324
Tiling details UQC2170 *22222b (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc3880 Snet sqc10316 Snet sqc693
Tiling details UQC2171 *22222b (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc4418 Snet sqc10311 Snet sqc653
Tiling details UQC2172 *22222b (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} No s‑net Snet sqc10432 Snet sqc651
Tiling details UQC2173 *22222b (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc653 Snet sqc10315 Snet sqc4419
Tiling details UQC2174 *22222a (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} No s‑net Snet sqc10562 Snet sqc4617
Tiling details UQC2175 *22222b (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc653 Snet sqc10310 Snet sqc4417
Tiling details UQC2176 *22222a (2,5,4) {5,3} {4.8.6}{6.8.4.4.8} Snet sqc10567 Snet sqc10564 Snet sqc4618

Symmetry-lowered hyperbolic tilings