h-net: hqc1867


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(4,5,2)
Vertex degrees{4,4,6,4}
2D vertex symbol {10.10.10.10}{10.3.3.10}{10.3.3.10.3.3}{3.3.3.3}
Delaney-Dress Symbol <1867.2:11:1 3 5 7 9 11,2 4 5 8 11 10,1 2 3 6 7 8 9 10 11:10 3,4 4 6 4>
Dual net hqc1707

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc4518 Fmmm 69 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc10514 P4/mmm 123 tetragonal {4,4,6,4} 20 (4,5)
Full image sqc10357 I4122 98 tetragonal {4,4,6,4} 20 (4,6)
Full image sqc10380 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10381 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10382 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10383 I4122 98 tetragonal {4,4,6,4} 20 (4,6)
Full image sqc10515 I4122 98 tetragonal {4,4,6,4} 20 (4,6)
Full image sqc10516 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10517 I4122 98 tetragonal {4,4,6,4} 20 (4,6)
Full image sqc10518 Fddd 70 orthorhombic {4,4,6,4} 20 (4,6)
Full image sqc10528 I4122 98 tetragonal {4,4,6,4} 20 (4,6)
Full image sqc660 Pmmm 47 orthorhombic {4,4,4,6} 5 (4,5)
Full image sqc4172 P4222 93 tetragonal {4,6,4,4} 10 (4,5)
Full image sqc4174 P4222 93 tetragonal {4,6,4,4} 10 (4,5)
Full image sqc4421 P42/mmc 131 tetragonal {4,4,6,4} 10 (4,5)
Full image sqc4519 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4606 Cmma 67 orthorhombic {4,4,6,4} 10 (4,5)
Full image sqc4611 P42/mmc 131 tetragonal {4,4,6,4} 10 (4,5)
Full image sqc4612 P42/mcm 132 tetragonal {4,6,4,4} 10 (4,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC5060 *22222a (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... No s‑net Snet sqc10517 Snet sqc4174
Tiling details UQC5061 *22222a (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc9956 Snet sqc10357 Snet sqc4172
Tiling details UQC5062 *22222b (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc3974 Snet sqc10381 Snet sqc660
Tiling details UQC5063 *22222b (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc660 Snet sqc10516 Snet sqc4606
Tiling details UQC5064 *22222b (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc4518 Snet sqc10380 Snet sqc660
Tiling details UQC5065 *22222a (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... No s‑net Snet sqc10515 Snet sqc4421
Tiling details UQC5066 *22222b (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc660 Snet sqc10382 Snet sqc4519
Tiling details UQC5067 *22222b (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... No s‑net Snet sqc10518 Snet sqc660
Tiling details UQC5068 *22222a (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc10514 Snet sqc10528 Snet sqc4612
Tiling details UQC5069 *22222a (4,5,2) {4,4,6,4} {10.10.10.10}{10.3.3.10}{10.3.3.... Snet sqc10017 Snet sqc10383 Snet sqc4611

Symmetry-lowered hyperbolic tilings