h-net: hqc206


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,2)
Vertex degrees{8,4}
2D vertex symbol {4.4.4.4.4.4.4.4}{4.4.4.4}
Delaney-Dress Symbol <206.2:6:1 2 3 5 6,2 4 6,1 3 4 5 6:4 4,8 4>
Dual net hqc207

Derived s-nets

s-nets with faithful topology

25 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc861 Fmmm 69 orthorhombic {8,4} 4 (2,4)
Full image sqc4806 Cmma 67 orthorhombic {8,8,4,4} 8 (4,6)
Full image sqc4835 Cmma 67 orthorhombic {8,4} 8 (2,7)
Full image sqc4775 I4122 98 tetragonal {8,4} 8 (2,4)
Full image sqc4780 I4122 98 tetragonal {8,4} 8 (2,4)
Full image sqc4805 C2/c 15 monoclinic {8,8,4,4} 8 (4,7)
Full image sqc4836 C2/c 15 monoclinic {8,4} 8 (2,8)
Full image sqc4916 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4962 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4969 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc4978 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5020 Fddd 70 orthorhombic {8,4} 8 (2,4)
Full image sqc5021 I4122 98 tetragonal {8,4} 8 (2,4)
Full image sqc5259 I4122 98 tetragonal {8,4} 8 (2,4)
Full image sqc5265 I4122 98 tetragonal {8,4} 8 (2,4)
Full image sqc16 Pmmm 47 orthorhombic {4,8} 2 (2,4)
Full image sqc710 P42/mmc 131 tetragonal {8,4} 4 (2,4)
Full image sqc718 P4222 93 tetragonal {8,4} 4 (2,4)
Full image sqc758 P4222 93 tetragonal {4,8} 4 (2,4)
Full image sqc860 Cmma 67 orthorhombic {8,4} 4 (2,4)
Full image sqc864 P4222 93 tetragonal {4,8} 4 (2,4)
Full image sqc894 Cmma 67 orthorhombic {4,8} 4 (2,4)
Full image sqc898 P4222 93 tetragonal {4,8} 4 (2,4)
Full image sqc4833 Imma 74 orthorhombic {8,8,4,4} 8 (4,6)
Full image sqc4851 Imma 74 orthorhombic {8,4} 8 (2,7)

s-nets with edge collapse


Derived U-tilings

12 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC194 *22222a (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc2448 Snet sqc4780 Snet sqc710
Tiling details UQC195 *22222a (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc2486 Snet sqc4775 Snet sqc718
Tiling details UQC196 *22222a (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc2477 Snet sqc5265 Snet sqc758
Tiling details UQC197 *22222a (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc4266 Snet sqc5021 Snet sqc864
Tiling details UQC198 *22222a (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc3664 Snet sqc5259 Snet sqc898
Tiling details UQC199 *22222b (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc10 Snet sqc4978 Snet sqc894
Tiling details UQC200 *22222b (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc316 Snet sqc4916 Snet sqc16
Tiling details UQC201 *22222b (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc10 Snet sqc5020 Snet sqc860
Tiling details UQC202 *22222b (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc861 Snet sqc4962 Snet sqc10
Tiling details UQC203 *22222b (2,4,2) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc562 Snet sqc4969 Snet sqc10
Tiling details UQC2383 *222222a (2,7,4) {8,4} {4.4.4.4.4.4.4.4}{4.4.4.4} Snet sqc4835 Snet sqc4836 Snet sqc4851
Tiling details UQC5196 *222222a (4,6,2) {8,8,4,4} {4.4.4.4.4.4.4.4}{4.4.4.4.4.4.4.... Snet sqc4806 Snet sqc4805 Snet sqc4833

Symmetry-lowered hyperbolic tilings