h-net: hqc542


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,3,2)
Vertex degrees{4,6,4}
2D vertex symbol {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4}
Delaney-Dress Symbol <542.2:7:1 3 5 7,2 4 5 6 7,1 2 3 6 7:5 4,4 6 4>
Dual net hqc363

Derived s-nets

s-nets with faithful topology

23 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1310 Fmmm 69 orthorhombic {6,4,4} 6 (3,3)
Full image sqc1335 Fmmm 69 orthorhombic {4,6,4} 6 (3,3)
Full image sqc6800 P4/mmm 123 tetragonal {4,6,4} 12 (3,3)
Full image sqc6483 I4122 98 tetragonal {4,6,4} 12 (3,4)
Full image sqc6491 I4122 98 tetragonal {4,6,4} 12 (3,4)
Full image sqc6492 I4122 98 tetragonal {4,6,4} 12 (3,4)
Full image sqc6607 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6629 I4122 98 tetragonal {4,6,4} 12 (3,4)
Full image sqc6643 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6648 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6793 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6794 Fddd 70 orthorhombic {4,6,4} 12 (3,4)
Full image sqc6799 I4122 98 tetragonal {4,6,4} 12 (3,4)
Full image sqc72 Pmmm 47 orthorhombic {4,4,6} 3 (3,3)
Full image sqc1256 Cmma 67 orthorhombic {6,4,4} 6 (3,3)
Full image sqc1305 P42/mcm 132 tetragonal {6,4,4} 6 (3,3)
Full image sqc1319 P4222 93 tetragonal {6,4,4} 6 (3,3)
Full image sqc1320 P4222 93 tetragonal {4,6,4} 6 (3,3)
Full image sqc1324 P42/mmc 131 tetragonal {4,6,4} 6 (3,3)
Full image sqc1336 Cmma 67 orthorhombic {4,6,4} 6 (3,3)
Full image sqc1357 Cmma 67 orthorhombic {4,6,4} 6 (3,3)
Full image sqc1398 P4222 93 tetragonal {4,6,4} 6 (3,3)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3447 *22222a (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} No s‑net Snet sqc6491 Snet sqc1305
Tiling details UQC3448 *22222a (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc5793 Snet sqc6483 Snet sqc1319
Tiling details UQC3449 *22222a (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc6800 Snet sqc6799 Snet sqc1324
Tiling details UQC3450 *22222a (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} No s‑net Snet sqc6629 Snet sqc1320
Tiling details UQC3451 *22222b (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc1115 Snet sqc6643 Snet sqc1256
Tiling details UQC3452 *22222a (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc5794 Snet sqc6492 Snet sqc1398
Tiling details UQC3453 *22222b (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc1310 Snet sqc6794 Snet sqc72
Tiling details UQC3454 *22222b (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc1335 Snet sqc6648 Snet sqc72
Tiling details UQC3455 *22222b (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} No s‑net Snet sqc6607 Snet sqc1357
Tiling details UQC3456 *22222b (3,3,2) {4,6,4} {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} Snet sqc72 Snet sqc6793 Snet sqc1336

Symmetry-lowered hyperbolic tilings