Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (3,3,2) |
Vertex degrees | {4,6,4} |
2D vertex symbol | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
Delaney-Dress Symbol | <542.2:7:1 3 5 7,2 4 5 6 7,1 2 3 6 7:5 4,4 6 4> |
Dual net | hqc363 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc1310 | Fmmm | 69 | orthorhombic | {6,4,4} | 6 | (3,3) | ||
sqc1335 | Fmmm | 69 | orthorhombic | {4,6,4} | 6 | (3,3) | ||
sqc6800 | P4/mmm | 123 | tetragonal | {4,6,4} | 12 | (3,3) | ||
sqc6483 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | ||
sqc6491 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | ||
sqc6492 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | ||
sqc6607 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | ||
sqc6629 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | ||
sqc6643 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | ||
sqc6648 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | ||
sqc6793 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | ||
sqc6794 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | ||
sqc6799 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | ||
sqc72 | Pmmm | 47 | orthorhombic | {4,4,6} | 3 | (3,3) | ||
sqc1256 | Cmma | 67 | orthorhombic | {6,4,4} | 6 | (3,3) | ||
sqc1305 | P42/mcm | 132 | tetragonal | {6,4,4} | 6 | (3,3) | ||
sqc1319 | P4222 | 93 | tetragonal | {6,4,4} | 6 | (3,3) | ||
sqc1320 | P4222 | 93 | tetragonal | {4,6,4} | 6 | (3,3) | ||
sqc1324 | P42/mmc | 131 | tetragonal | {4,6,4} | 6 | (3,3) | ||
sqc1336 | Cmma | 67 | orthorhombic | {4,6,4} | 6 | (3,3) | ||
sqc1357 | Cmma | 67 | orthorhombic | {4,6,4} | 6 | (3,3) | ||
sqc1398 | P4222 | 93 | tetragonal | {4,6,4} | 6 | (3,3) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3447 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net | sqc6491 | sqc1305 | |
UQC3448 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc5793 | sqc6483 | sqc1319 | |
UQC3449 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc6800 | sqc6799 | sqc1324 | |
UQC3450 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net | sqc6629 | sqc1320 | |
UQC3451 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc1115 | sqc6643 | sqc1256 | |
UQC3452 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc5794 | sqc6492 | sqc1398 | |
UQC3453 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc1310 | sqc6794 | sqc72 | |
UQC3454 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc1335 | sqc6648 | sqc72 | |
UQC3455 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net | sqc6607 | sqc1357 | |
UQC3456 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | sqc72 | sqc6793 | sqc1336 |