| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,3,2) |
| Vertex degrees | {4,6,4} |
| 2D vertex symbol | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
| Delaney-Dress Symbol | <542.2:7:1 3 5 7,2 4 5 6 7,1 2 3 6 7:5 4,4 6 4> |
| Dual net | hqc363 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc1310 | Fmmm | 69 | orthorhombic | {6,4,4} | 6 | (3,3) | |
|
sqc1335 | Fmmm | 69 | orthorhombic | {4,6,4} | 6 | (3,3) | |
|
sqc6800 | P4/mmm | 123 | tetragonal | {4,6,4} | 12 | (3,3) | |
|
sqc6483 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | |
|
sqc6491 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | |
|
sqc6492 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | |
|
sqc6607 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | |
|
sqc6629 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | |
|
sqc6643 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | |
|
sqc6648 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | |
|
sqc6793 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | |
|
sqc6794 | Fddd | 70 | orthorhombic | {4,6,4} | 12 | (3,4) | |
|
sqc6799 | I4122 | 98 | tetragonal | {4,6,4} | 12 | (3,4) | |
|
sqc72 | Pmmm | 47 | orthorhombic | {4,4,6} | 3 | (3,3) | |
|
sqc1256 | Cmma | 67 | orthorhombic | {6,4,4} | 6 | (3,3) | |
|
sqc1305 | P42/mcm | 132 | tetragonal | {6,4,4} | 6 | (3,3) | |
|
sqc1319 | P4222 | 93 | tetragonal | {6,4,4} | 6 | (3,3) | |
|
sqc1320 | P4222 | 93 | tetragonal | {4,6,4} | 6 | (3,3) | |
|
sqc1324 | P42/mmc | 131 | tetragonal | {4,6,4} | 6 | (3,3) | |
|
sqc1336 | Cmma | 67 | orthorhombic | {4,6,4} | 6 | (3,3) | |
|
sqc1357 | Cmma | 67 | orthorhombic | {4,6,4} | 6 | (3,3) | |
|
sqc1398 | P4222 | 93 | tetragonal | {4,6,4} | 6 | (3,3) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3447 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net |
sqc6491
|
sqc1305
|
![]() |
UQC3448 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc5793
|
sqc6483
|
sqc1319
|
![]() |
UQC3449 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc6800
|
sqc6799
|
sqc1324
|
![]() |
UQC3450 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net |
sqc6629
|
sqc1320
|
![]() |
UQC3451 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc1115
|
sqc6643
|
sqc1256
|
![]() |
UQC3452 | *22222a | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc5794
|
sqc6492
|
sqc1398
|
![]() |
UQC3453 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc1310
|
sqc6794
|
sqc72
|
![]() |
UQC3454 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc1335
|
sqc6648
|
sqc72
|
![]() |
UQC3455 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} | No s‑net |
sqc6607
|
sqc1357
|
![]() |
UQC3456 | *22222b | (3,3,2) | {4,6,4} | {5.5.5.5}{5.4.5.5.4.5}{5.4.5.4} |
sqc72
|
sqc6793
|
sqc1336
|