| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,3,2) |
| Vertex degrees | {4,3,4} |
| 2D vertex symbol | {10.10.10.10}{10.4.10}{10.4.10.4} |
| Delaney-Dress Symbol | <551.2:7:1 3 5 7,2 4 5 6 7,1 2 3 6 7:10 4,4 3 4> |
| Dual net | hqc359 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc69 | Pmmm | 47 | orthorhombic | {4,4,3} | 4 | (3,3) | |
|
sqc1386 | Fmmm | 69 | orthorhombic | {3,4,4} | 8 | (3,3) | |
|
sqc6953 | P4/mmm | 123 | tetragonal | {4,3,4} | 16 | (3,3) | |
|
sqc6645 | I4122 | 98 | tetragonal | {4,3,4} | 16 | (3,4) | |
|
sqc6659 | Fddd | 70 | orthorhombic | {4,3,4} | 16 | (3,4) | |
|
sqc6660 | Fddd | 70 | orthorhombic | {4,3,4} | 16 | (3,4) | |
|
sqc6661 | Fddd | 70 | orthorhombic | {4,3,4} | 16 | (3,4) | |
|
sqc6662 | I4122 | 98 | tetragonal | {4,3,4} | 16 | (3,4) | |
|
sqc6710 | Fddd | 70 | orthorhombic | {4,3,4} | 16 | (3,4) | |
|
sqc6923 | I4122 | 98 | tetragonal | {4,3,4} | 16 | (3,4) | |
|
sqc6948 | I4122 | 98 | tetragonal | {4,3,4} | 16 | (3,4) | |
|
sqc6960 | I4122 | 98 | tetragonal | {4,3,4} | 16 | (3,4) | |
|
sqc6961 | Fddd | 70 | orthorhombic | {4,3,4} | 16 | (3,4) | |
|
sqc1257 | P4222 | 93 | tetragonal | {3,4,4} | 8 | (3,3) | |
|
sqc1258 | P4222 | 93 | tetragonal | {3,4,4} | 8 | (3,3) | |
|
sqc1387 | Cmma | 67 | orthorhombic | {4,3,4} | 8 | (3,3) | |
|
sqc1392 | P42/mmc | 131 | tetragonal | {4,3,4} | 8 | (3,3) | |
|
sqc1402 | Cmma | 67 | orthorhombic | {3,4,4} | 8 | (3,3) | |
|
sqc1438 | P42/mmc | 131 | tetragonal | {4,3,4} | 8 | (3,3) | |
|
sqc1439 | P42/mcm | 132 | tetragonal | {3,4,4} | 8 | (3,3) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3470 | *22222a | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} | No s‑net |
sqc6960
|
sqc1258
|
![]() |
UQC3471 | *22222a | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc5922
|
sqc6645
|
sqc1257
|
![]() |
UQC3472 | *22222b | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc69
|
sqc6661
|
sqc1387
|
![]() |
UQC3473 | *22222a | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} | No s‑net |
sqc6948
|
sqc1392
|
![]() |
UQC3474 | *22222b | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} | No s‑net |
sqc6961
|
sqc69
|
![]() |
UQC3475 | *22222b | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc1386
|
sqc6659
|
sqc69
|
![]() |
UQC3476 | *22222b | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc69
|
sqc6710
|
sqc1402
|
![]() |
UQC3477 | *22222b | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc1121
|
sqc6660
|
sqc69
|
![]() |
UQC3478 | *22222a | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc6116
|
sqc6662
|
sqc1438
|
![]() |
UQC3479 | *22222a | (3,3,2) | {4,3,4} | {10.10.10.10}{10.4.10}{10.4.10.4} |
sqc6953
|
sqc6923
|
sqc1439
|