h-net: hqc617


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{5,6}
2D vertex symbol {4.6.3.6.4}{6.3.3.6.3.3}
Delaney-Dress Symbol <617.2:8:1 2 3 5 7 8,2 4 5 6 8,1 3 6 7 8:4 6 3,5 6>
Dual net hqc803

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc136 Pmmm 47 orthorhombic {5,6} 3 (2,4)
Full image sqc2020 Fmmm 69 orthorhombic {5,6} 6 (2,4)
Full image sqc7939 P4/mmm 123 tetragonal {6,5} 12 (2,4)
Full image sqc7457 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7595 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7673 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7675 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7677 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7679 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7680 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7842 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7883 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7940 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc177 Pmmm 47 orthorhombic {5,6} 3 (2,4)
Full image sqc1701 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1912 P4222 93 tetragonal {6,5} 6 (2,4)
Full image sqc1919 P42/mmc 131 tetragonal {5,6} 6 (2,4)
Full image sqc2013 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc2019 Cmma 67 orthorhombic {5,6} 6 (2,4)
Full image sqc2027 Cmma 67 orthorhombic {5,6} 6 (2,4)
Full image sqc2125 P4222 93 tetragonal {6,5} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC760 *22222a (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} No s‑net Snet sqc7457 Snet sqc1701
Tiling details UQC761 *22222a (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc1369 Snet sqc7595 Snet sqc1912
Tiling details UQC762 *22222b (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc136 Snet sqc7677 Snet sqc2019
Tiling details UQC763 *22222a (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc6778 Snet sqc7675 Snet sqc1919
Tiling details UQC764 *22222b (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc136 Snet sqc7680 Snet sqc2027
Tiling details UQC765 *22222b (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc2020 Snet sqc7679 Snet sqc136
Tiling details UQC766 *22222b (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} No s‑net Snet sqc7842 Snet sqc136
Tiling details UQC767 *22222b (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc1404 Snet sqc7673 Snet sqc177
Tiling details UQC768 *22222a (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} Snet sqc7939 Snet sqc7940 Snet sqc2125
Tiling details UQC769 *22222a (2,4,3) {5,6} {4.6.3.6.4}{6.3.3.6.3.3} No s‑net Snet sqc7883 Snet sqc2013

Symmetry-lowered hyperbolic tilings