h-net: hqc642


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{6,4}
2D vertex symbol {4.3.6.6.3.4}{3.6.3.6}
Delaney-Dress Symbol <642.2:8:1 2 3 5 7 8,2 4 5 8 7,1 3 6 7 8:4 3 6,6 4>
Dual net hqc824

Derived s-nets

s-nets with faithful topology

26 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc1730 P4/mmm 123 tetragonal {6,4} 6 (2,3)
Full image sqc1881 Fmmm 69 orthorhombic {4,6} 6 (2,4)
Full image sqc1883 Fmmm 69 orthorhombic {4,6} 6 (2,4)
Full image sqc2110 Fmmm 69 orthorhombic {6,4} 6 (2,4)
Full image sqc7435 P4/mmm 123 tetragonal {6,4} 12 (2,4)
Full image sqc7958 P4/mmm 123 tetragonal {6,4} 12 (2,4)
Full image sqc7434 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7563 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7600 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7636 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7638 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7825 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7826 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7827 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc7829 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc7943 I4122 98 tetragonal {6,4} 12 (2,5)
Full image sqc173 Fmmm 69 orthorhombic {4,6} 3 (2,3)
Full image sqc1810 P4222 93 tetragonal {6,4} 6 (2,4)
Full image sqc1882 Cmma 67 orthorhombic {6,4} 6 (2,4)
Full image sqc1915 Cmma 67 orthorhombic {6,4} 6 (2,4)
Full image sqc2101 P42/mcm 132 tetragonal {4,6} 6 (2,4)
Full image sqc2103 P4222 93 tetragonal {4,6} 6 (2,4)
Full image sqc2111 Cmma 67 orthorhombic {6,4} 6 (2,4)
Full image sqc2112 Cmma 67 orthorhombic {6,4} 6 (2,4)
Full image sqc2128 P4222 93 tetragonal {4,6} 6 (2,4)
Full image sqc2129 P4222 93 tetragonal {6,4} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC840 *22222a (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc7435 Snet sqc7434 Snet sqc2101
Tiling details UQC841 *22222b (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc1417 Snet sqc7636 Snet sqc1915
Tiling details UQC842 *22222a (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc6697 Snet sqc7563 Snet sqc1810
Tiling details UQC843 *22222b (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc1881 Snet sqc7827 Snet sqc173
Tiling details UQC844 *22222b (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc1883 Snet sqc7825 Snet sqc2111
Tiling details UQC845 *22222a (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc7958 Snet sqc7943 Snet sqc2128
Tiling details UQC846 *22222b (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc2110 Snet sqc7826 Snet sqc1882
Tiling details UQC847 *22222a (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc1730 Snet sqc7829 Snet sqc2129
Tiling details UQC848 *22222b (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc2110 Snet sqc7638 Snet sqc2112
Tiling details UQC849 *22222a (2,4,3) {6,4} {4.3.6.6.3.4}{3.6.3.6} Snet sqc6566 Snet sqc7600 Snet sqc2103

Symmetry-lowered hyperbolic tilings