h-net: hqc824


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{4,3,6}
2D vertex symbol {6.6.6.6}{6.4.6}{6.6.4.6.6.4}
Delaney-Dress Symbol <824.2:8:1 3 5 7 8,2 4 8 6 7,1 2 3 6 7 8:6 4,4 3 6>
Dual net hqc642

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc130 Pmmm 47 orthorhombic {3,4,6} 4 (3,4)
Full image sqc2011 Fmmm 69 orthorhombic {3,6,4} 8 (3,4)
Full image sqc2083 Fmmm 69 orthorhombic {3,6,4} 8 (3,4)
Full image sqc7972 P4/mmm 123 tetragonal {4,3,6} 16 (3,4)
Full image sqc7452 I4122 98 tetragonal {4,3,6} 16 (3,5)
Full image sqc7615 I4122 98 tetragonal {4,3,6} 16 (3,5)
Full image sqc7645 I4122 98 tetragonal {4,3,6} 16 (3,5)
Full image sqc7646 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7666 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7667 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7668 I4122 98 tetragonal {4,3,6} 16 (3,5)
Full image sqc7794 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7897 Fddd 70 orthorhombic {4,3,6} 16 (3,5)
Full image sqc7973 I4122 98 tetragonal {4,3,6} 16 (3,5)
Full image sqc1691 P4222 93 tetragonal {6,4,3} 8 (3,4)
Full image sqc1736 P4222 93 tetragonal {3,6,4} 8 (3,4)
Full image sqc1737 P4222 93 tetragonal {4,3,6} 8 (3,4)
Full image sqc1760 P4222 93 tetragonal {3,6,4} 8 (3,4)
Full image sqc1947 P42/mmc 131 tetragonal {4,3,6} 8 (3,4)
Full image sqc2085 Cmma 67 orthorhombic {3,6,4} 8 (3,4)
Full image sqc2095 Cmma 67 orthorhombic {3,6,4} 8 (3,4)
Full image sqc2120 Cmma 67 orthorhombic {6,3,4} 8 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3754 *22222a (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc1569 Snet sqc7645 Snet sqc1691
Tiling details UQC3755 *22222a (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc7031 Snet sqc7452 Snet sqc1737
Tiling details UQC3756 *22222a (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc7972 Snet sqc7973 Snet sqc1947
Tiling details UQC3757 *22222a (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc7324 Snet sqc7668 Snet sqc1736
Tiling details UQC3758 *22222a (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc7105 Snet sqc7615 Snet sqc1760
Tiling details UQC3759 *22222b (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc130 Snet sqc7897 Snet sqc2120
Tiling details UQC3760 *22222b (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc2011 Snet sqc7667 Snet sqc130
Tiling details UQC3761 *22222b (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc1555 Snet sqc7646 Snet sqc2095
Tiling details UQC3762 *22222b (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc2083 Snet sqc7794 Snet sqc130
Tiling details UQC3763 *22222b (3,4,2) {4,3,6} {6.6.6.6}{6.4.6}{6.6.4.6.6.4} Snet sqc1563 Snet sqc7666 Snet sqc2085

Symmetry-lowered hyperbolic tilings