h-net: hqc669


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,4,3)
Vertex degrees{5,6}
2D vertex symbol {4.4.4.4.4}{4.4.4.4.4.4}
Delaney-Dress Symbol <669.2:8:1 2 3 5 7 8,2 4 8 6 7,1 3 6 7 8:4 4 4,5 6>
Dual net hqc821

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc134 btv Pmmm 47 orthorhombic {5,6} 3 (2,4)
Full image sqc2010 Fmmm 69 orthorhombic {5,6} 6 (2,4)
Full image sqc2017 Fmmm 69 orthorhombic {5,6} 6 (2,4)
Full image sqc7961 P4/mmm 123 tetragonal {6,5} 12 (2,4)
Full image sqc7449 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7456 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7614 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7649 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7663 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7678 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7682 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7683 Fddd 70 orthorhombic {6,5} 12 (2,5)
Full image sqc7832 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc7962 I4122 98 tetragonal {6,5} 12 (2,5)
Full image sqc1700 P4222 93 tetragonal {6,5} 6 (2,4)
Full image sqc1731 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1913 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1917 Cmma 67 orthorhombic {5,6} 6 (2,4)
Full image sqc1918 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc1944 P4222 93 tetragonal {5,6} 6 (2,4)
Full image sqc2016 Cmma 67 orthorhombic {5,6} 6 (2,4)
Full image sqc2025 Cmma 67 orthorhombic {5,6} 6 (2,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC901 *22222a (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc1567 Snet sqc7456 Snet sqc1700
Tiling details UQC902 *22222a (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc6862 Snet sqc7449 Snet sqc1918
Tiling details UQC903 *22222b (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc1549 Snet sqc7683 Snet sqc2025
Tiling details UQC904 *22222a (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc6512 Snet sqc7614 Snet sqc1913
Tiling details UQC905 *22222b (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc134 Snet sqc7678 Snet sqc2016
Tiling details UQC906 *22222b (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc1405 Snet sqc7649 Snet sqc1917
Tiling details UQC907 *22222b (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc2010 Snet sqc7663 Snet sqc134
Tiling details UQC908 *22222b (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc2017 Snet sqc7682 Snet sqc134
Tiling details UQC909 *22222a (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc7311 Snet sqc7832 Snet sqc1731
Tiling details UQC910 *22222a (2,4,3) {5,6} {4.4.4.4.4}{4.4.4.4.4.4} Snet sqc7961 Snet sqc7962 Snet sqc1944

Symmetry-lowered hyperbolic tilings