h-net: hqc819


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{4,4,4}
2D vertex symbol {3.10.10.3}{3.10.3.10}{10.10.10.10}
Delaney-Dress Symbol <819.2:8:1 3 5 7 8,2 3 6 5 8,1 4 5 6 7 8:3 10,4 4 4>
Dual net hqc670

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2070 Fmmm 69 orthorhombic {4,4,4} 8 (3,4)
Full image sqc8058 P4/mmm 123 tetragonal {4,4,4} 16 (3,4)
Full image sqc7767 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7768 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7771 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7786 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7787 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8042 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc8047 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8048 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc8049 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc8059 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc160 Pmmm 47 orthorhombic {4,4,4} 4 (3,4)
Full image sqc1757 P4222 93 tetragonal {4,4,4} 8 (3,4)
Full image sqc1758 P4222 93 tetragonal {4,4,4} 8 (3,4)
Full image sqc1989 P42/mmc 131 tetragonal {4,4,4} 8 (3,4)
Full image sqc2078 Cmma 67 orthorhombic {4,4,4} 8 (3,4)
Full image sqc2171 Cmma 67 orthorhombic {4,4,4} 8 (3,4)
Full image sqc2172 P42/mmc 131 tetragonal {4,4,4} 8 (3,4)
Full image sqc2173 P42/mcm 132 tetragonal {4,4,4} 8 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3722 *22222a (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} No s‑net Snet sqc8042 Snet sqc1758
Tiling details UQC3723 *22222a (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc7110 Snet sqc7771 Snet sqc1757
Tiling details UQC3724 *22222b (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc1570 Snet sqc7787 Snet sqc160
Tiling details UQC3725 *22222b (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc160 Snet sqc8047 Snet sqc2171
Tiling details UQC3726 *22222b (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc2070 Snet sqc7786 Snet sqc160
Tiling details UQC3727 *22222a (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} No s‑net Snet sqc8048 Snet sqc1989
Tiling details UQC3728 *22222b (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} No s‑net Snet sqc8049 Snet sqc160
Tiling details UQC3729 *22222b (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc160 Snet sqc7767 Snet sqc2078
Tiling details UQC3730 *22222a (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc7332 Snet sqc7768 Snet sqc2172
Tiling details UQC3731 *22222a (3,4,2) {4,4,4} {3.10.10.3}{3.10.3.10}{10.10.10.10} Snet sqc8058 Snet sqc8059 Snet sqc2173

Symmetry-lowered hyperbolic tilings