Orbifold symbol | *246 |
Transitivity (vertex, edge, ring) | (1,1,1) |
Vertex degrees | {4} |
2D vertex symbol | {6.6.6.6} |
Vertex coordination sequence | [(4, 12, 32, 84, 220, 576, 1508, 3948, 10336, 27060)] |
Delaney-Dress Symbol | <9.1:1:1,1,1:6,4> |
Dual net | hqc5 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc29 | mot | P4/mmm | 123 | tetragonal | {4,4} | 3 | (2,2) | |
sqc823 | Pmmm | 47 | orthorhombic | {4,4,4,4,4} | 6 | (5,7) | ||
sqc907 | I4/mmm | 139 | tetragonal | {4,4} | 6 | (2,3) | ||
sqc939 | Fmmm | 69 | orthorhombic | {4,4,4} | 6 | (3,4) | ||
sqc970 | sod | Im-3m | 229 | cubic | {4} | 6 | (1,1) | |
sqc973 | Fmmm | 69 | orthorhombic | {4,4} | 6 | (2,3) | ||
sqc4895 | P42/nnm | 134 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc4898 | Cmma | 67 | orthorhombic | {4,4,4,4} | 12 | (4,7) | ||
sqc5264 | hbm | P4/mmm | 123 | tetragonal | {4,4} | 12 | (2,3) | |
sqc5341 | P42/nnm | 134 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc5513 | P4/mmm | 123 | tetragonal | {4,4} | 12 | (2,3) | ||
sqc5543 | P42/nnm | 134 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc182 | neb | Fddd | 70 | orthorhombic | {4} | 4 | (1,2) | |
sqc5111 | I4122 | 98 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc5236 | I4122 | 98 | tetragonal | {4,4,4} | 12 | (3,4) | ||
sqc5239 | Fddd | 70 | orthorhombic | {4,4,4} | 12 | (3,4) | ||
sqc5257 | C2/c | 15 | monoclinic | {4,4,4,4,4} | 12 | (5,7) | ||
sqc5286 | Ibca | 73 | orthorhombic | {4,4} | 12 | (2,5) | ||
sqc5288 | Ibca | 73 | orthorhombic | {4,4} | 12 | (2,5) | ||
sqc5290 | I4122 | 98 | tetragonal | {4,4,4} | 12 | (3,4) | ||
sqc5292 | C2/c | 15 | monoclinic | {4,4,4,4} | 12 | (4,8) | ||
sqc5298 | Fddd | 70 | orthorhombic | {4,4,4} | 12 | (3,4) | ||
sqc5508 | Ibca | 73 | orthorhombic | {4,4} | 12 | (2,5) | ||
sqc5515 | I4122 | 98 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc5518 | Ibca | 73 | orthorhombic | {4,4} | 12 | (2,5) | ||
sqc5522 | Fddd | 70 | orthorhombic | {4,4} | 12 | (2,4) | ||
sqc5561 | I41/acd | 142 | tetragonal | {4,4} | 12 | (2,2) | ||
sqc5579 | lcs | Ia-3d | 230 | cubic | {4} | 12 | (1,1) | |
sqc5580 | ict | R-3c | 167 | rhombohedral | {4} | 12 | (1,3) | |
sqc35 | nbo | Im-3m | 229 | cubic | {4} | 3 | (1,1) | |
sqc852 | Pnnn | 48 | orthorhombic | {4,4} | 6 | (2,4) | ||
sqc856 | P4222 | 93 | tetragonal | {4,4,4} | 6 | (3,4) | ||
sqc857 | P4222 | 93 | tetragonal | {4,4,4} | 6 | (3,4) | ||
sqc949 | Cmma | 67 | orthorhombic | {4,4,4} | 6 | (3,4) | ||
sqc952 | P42/mcm | 132 | tetragonal | {4,4} | 6 | (2,3) | ||
sqc968 | P4222 | 93 | tetragonal | {4,4} | 6 | (2,3) | ||
sqc969 | P42/nnm | 134 | tetragonal | {4,4} | 6 | (2,2) | ||
sqc972 | Cmma | 67 | orthorhombic | {4,4} | 6 | (2,3) | ||
sqc974 | bbh | Cmma | 67 | orthorhombic | {4,4} | 6 | (2,3) | |
sqc5287 | I41/amd | 141 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc5295 | Imma | 74 | orthorhombic | {4,4,4,4} | 12 | (4,7) | ||
sqc5339 | I41/amd | 141 | tetragonal | {4,4} | 12 | (2,4) | ||
sqc5509 | I41/amd | 141 | tetragonal | {4,4} | 12 | (2,4) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3 | *246 | (1,1,1) | {4} | {6.6.6.6} | sqc970 | sqc5579 | sqc35 | |
UQC55 | *2224 | (2,2,1) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc29 | sqc5561 | sqc969 | |
UQC79 | *22222a | (3,4,1) | {4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6} | sqc4678 | sqc5236 | sqc857 | |
UQC80 | *22222b | (3,4,1) | {4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6} | sqc706 | sqc5239 | sqc949 | |
UQC81 | *22222b | (3,4,1) | {4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6} | sqc939 | sqc5298 | sqc29 | |
UQC82 | *22222a | (3,4,1) | {4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6} | sqc4504 | sqc5290 | sqc856 | |
UQC297 | *22222a | (2,3,2) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc5264 | sqc5111 | sqc952 | |
UQC298 | *22222a | (2,3,2) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc5513 | sqc5515 | sqc968 | |
UQC299 | *22222b | (2,3,2) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc973 | sqc5522 | sqc972 | |
UQC300 | *22222b | (2,3,2) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc907 | sqc182 | sqc974 | |
UQC4 | *2626 | (2,3,4) | {4,4} | {6.6.6.6}{6.6.6.6} | sqc35 | sqc5580 | sqc970 | |
UQC5127 | *222222a | (4,7,2) | {4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc4898 | sqc5292 | sqc5295 | |
UQC5129 | *222222a | (4,7,2) | {4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc4895 | sqc5508 | sqc5509 | |
UQC5130 | *222222a | (4,7,2) | {4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc5543 | sqc5518 | sqc5339 | |
UQC5131 | *222222a | (4,7,2) | {4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc5341 | sqc5288 | sqc5287 | |
UQC5132 | *222222b | (4,7,2) | {4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc705 | sqc5286 | sqc852 | |
UQC5317 | *222222a | (5,7,2) | {4,4,4,4,4} | {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... | sqc823 | sqc5257 | sqc4684 |