h-net: hqc9


Topological data

Orbifold symbol*246
Transitivity (vertex, edge, ring)(1,1,1)
Vertex degrees{4}
2D vertex symbol {6.6.6.6}
Vertex coordination sequence [(4, 12, 32, 84, 220, 576, 1508, 3948, 10336, 27060)]
Delaney-Dress Symbol <9.1:1:1,1,1:6,4>
Dual net hqc5

Derived s-nets

s-nets with faithful topology

43 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc29 mot P4/mmm 123 tetragonal {4,4} 3 (2,2)
Full image sqc823 Pmmm 47 orthorhombic {4,4,4,4,4} 6 (5,7)
Full image sqc907 I4/mmm 139 tetragonal {4,4} 6 (2,3)
Full image sqc939 Fmmm 69 orthorhombic {4,4,4} 6 (3,4)
Full image sqc970 sod Im-3m 229 cubic {4} 6 (1,1)
Full image sqc973 Fmmm 69 orthorhombic {4,4} 6 (2,3)
Full image sqc4895 P42/nnm 134 tetragonal {4,4} 12 (2,4)
Full image sqc4898 Cmma 67 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc5264 hbm P4/mmm 123 tetragonal {4,4} 12 (2,3)
Full image sqc5341 P42/nnm 134 tetragonal {4,4} 12 (2,4)
Full image sqc5513 P4/mmm 123 tetragonal {4,4} 12 (2,3)
Full image sqc5543 P42/nnm 134 tetragonal {4,4} 12 (2,4)
Full image sqc182 neb Fddd 70 orthorhombic {4} 4 (1,2)
Full image sqc5111 I4122 98 tetragonal {4,4} 12 (2,4)
Full image sqc5236 I4122 98 tetragonal {4,4,4} 12 (3,4)
Full image sqc5239 Fddd 70 orthorhombic {4,4,4} 12 (3,4)
Full image sqc5257 C2/c 15 monoclinic {4,4,4,4,4} 12 (5,7)
Full image sqc5286 Ibca 73 orthorhombic {4,4} 12 (2,5)
Full image sqc5288 Ibca 73 orthorhombic {4,4} 12 (2,5)
Full image sqc5290 I4122 98 tetragonal {4,4,4} 12 (3,4)
Full image sqc5292 C2/c 15 monoclinic {4,4,4,4} 12 (4,8)
Full image sqc5298 Fddd 70 orthorhombic {4,4,4} 12 (3,4)
Full image sqc5508 Ibca 73 orthorhombic {4,4} 12 (2,5)
Full image sqc5515 I4122 98 tetragonal {4,4} 12 (2,4)
Full image sqc5518 Ibca 73 orthorhombic {4,4} 12 (2,5)
Full image sqc5522 Fddd 70 orthorhombic {4,4} 12 (2,4)
Full image sqc5561 I41/acd 142 tetragonal {4,4} 12 (2,2)
Full image sqc5579 lcs Ia-3d 230 cubic {4} 12 (1,1)
Full image sqc5580 ict R-3c 167 rhombohedral {4} 12 (1,3)
Full image sqc35 nbo Im-3m 229 cubic {4} 3 (1,1)
Full image sqc852 Pnnn 48 orthorhombic {4,4} 6 (2,4)
Full image sqc856 P4222 93 tetragonal {4,4,4} 6 (3,4)
Full image sqc857 P4222 93 tetragonal {4,4,4} 6 (3,4)
Full image sqc949 Cmma 67 orthorhombic {4,4,4} 6 (3,4)
Full image sqc952 P42/mcm 132 tetragonal {4,4} 6 (2,3)
Full image sqc968 P4222 93 tetragonal {4,4} 6 (2,3)
Full image sqc969 P42/nnm 134 tetragonal {4,4} 6 (2,2)
Full image sqc972 Cmma 67 orthorhombic {4,4} 6 (2,3)
Full image sqc974 bbh Cmma 67 orthorhombic {4,4} 6 (2,3)
Full image sqc5287 I41/amd 141 tetragonal {4,4} 12 (2,4)
Full image sqc5295 Imma 74 orthorhombic {4,4,4,4} 12 (4,7)
Full image sqc5339 I41/amd 141 tetragonal {4,4} 12 (2,4)
Full image sqc5509 I41/amd 141 tetragonal {4,4} 12 (2,4)

s-nets with edge collapse


Derived U-tilings

17 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3 *246 (1,1,1) {4} {6.6.6.6} Snet sqc970 Snet sqc5579 Snet sqc35
Tiling details UQC55 *2224 (2,2,1) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc29 Snet sqc5561 Snet sqc969
Tiling details UQC79 *22222a (3,4,1) {4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6} Snet sqc4678 Snet sqc5236 Snet sqc857
Tiling details UQC80 *22222b (3,4,1) {4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6} Snet sqc706 Snet sqc5239 Snet sqc949
Tiling details UQC81 *22222b (3,4,1) {4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6} Snet sqc939 Snet sqc5298 Snet sqc29
Tiling details UQC82 *22222a (3,4,1) {4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6} Snet sqc4504 Snet sqc5290 Snet sqc856
Tiling details UQC297 *22222a (2,3,2) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc5264 Snet sqc5111 Snet sqc952
Tiling details UQC298 *22222a (2,3,2) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc5513 Snet sqc5515 Snet sqc968
Tiling details UQC299 *22222b (2,3,2) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc973 Snet sqc5522 Snet sqc972
Tiling details UQC300 *22222b (2,3,2) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc907 Snet sqc182 Snet sqc974
Tiling details UQC4 *2626 (2,3,4) {4,4} {6.6.6.6}{6.6.6.6} Snet sqc35 Snet sqc5580 Snet sqc970
Tiling details UQC5127 *222222a (4,7,2) {4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc4898 Snet sqc5292 Snet sqc5295
Tiling details UQC5129 *222222a (4,7,2) {4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc4895 Snet sqc5508 Snet sqc5509
Tiling details UQC5130 *222222a (4,7,2) {4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc5543 Snet sqc5518 Snet sqc5339
Tiling details UQC5131 *222222a (4,7,2) {4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc5341 Snet sqc5288 Snet sqc5287
Tiling details UQC5132 *222222b (4,7,2) {4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc705 Snet sqc5286 Snet sqc852
Tiling details UQC5317 *222222a (5,7,2) {4,4,4,4,4} {6.6.6.6}{6.6.6.6}{6.6.6.6}{6.6.... Snet sqc823 Snet sqc5257 Snet sqc4684

Symmetry-lowered hyperbolic tilings