h-net: hqc985


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,5,3)
Vertex degrees{12,3}
2D vertex symbol {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4}
Delaney-Dress Symbol <985.2:9:1 2 3 5 7 8 9,2 4 5 8 9,1 3 6 7 8 9:4 3 4,12 3>
Dual net hqc1105

Derived s-nets

s-nets with faithful topology

18 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc8393 I4122 98 tetragonal {3,12} 12 (2,6)
Full image sqc8396 I4122 98 tetragonal {3,12} 12 (2,6)
Full image sqc8472 I4122 98 tetragonal {3,12} 12 (2,6)
Full image sqc8473 I4122 98 tetragonal {3,12} 12 (2,6)
Full image sqc8476 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8477 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8479 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8480 I4122 98 tetragonal {3,12} 12 (2,6)
Full image sqc8526 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc8542 Fddd 70 orthorhombic {3,12} 12 (2,6)
Full image sqc2299 P4222 93 tetragonal {3,12} 6 (2,5)
Full image sqc2305 P4222 93 tetragonal {12,3} 6 (2,5)
Full image sqc2318 Cmma 67 orthorhombic {12,3} 6 (2,5)
Full image sqc2521 P4222 93 tetragonal {3,12} 6 (2,5)
Full image sqc2530 Cmma 67 orthorhombic {3,12} 6 (2,5)
Full image sqc14539 Pmmm 47 orthorhombic {12,3} 3 (2,5)
Full image sqc14593 P42/mmc 131 tetragonal {3,12} 6 (2,5)
Full image sqc14594 P4222 93 tetragonal {3,12} 6 (2,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC1025 *22222a (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} No s‑net Snet sqc8396 Snet sqc14593
Tiling details UQC1026 *22222a (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc7023 Snet sqc8393 Snet sqc2299
Tiling details UQC1027 *22222b (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} No s‑net Snet sqc8476 Snet sqc14539
Tiling details UQC1028 *22222b (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc102 Snet sqc8479 Snet sqc2318
Tiling details UQC1029 *22222a (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc1619 Snet sqc8480 Snet sqc2305
Tiling details UQC1030 *22222b (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc2212 Snet sqc8542 Snet sqc102
Tiling details UQC1031 *22222b (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc2215 Snet sqc8526 Snet sqc102
Tiling details UQC1032 *22222a (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} No s‑net Snet sqc8473 Snet sqc14594
Tiling details UQC1033 *22222b (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc102 Snet sqc8477 Snet sqc2530
Tiling details UQC1034 *22222a (2,5,3) {12,3} {4.3.4.4.3.4.4.3.4.4.3.4}{3.4.4} Snet sqc7424 Snet sqc8472 Snet sqc2521

Symmetry-lowered hyperbolic tilings