I41/acd

Number142
Symmetry Classtetragonal
ChiralN

s-nets

601 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc12401 I41/acd 142 tetragonal {6,6,4} 24 (3,4)
Full image sqc12402 I41/acd 142 tetragonal {4,6} 24 (2,4)
Full image sqc12403 I41/acd 142 tetragonal {5,6} 24 (2,5)
Full image sqc12404 I41/acd 142 tetragonal {6,5} 24 (2,5)
Full image sqc12405 I41/acd 142 tetragonal {6,4,4} 28 (3,5)
Full image sqc12406 I41/acd 142 tetragonal {4,6,4} 28 (3,5)
Full image sqc12407 I41/acd 142 tetragonal {4,6,4} 28 (3,5)
Full image sqc12408 I41/acd 142 tetragonal {6,4,4} 28 (3,5)
Full image sqc12409 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12410 I41/acd 142 tetragonal {5,3} 32 (2,5)
Full image sqc12411 I41/acd 142 tetragonal {5,3} 32 (2,5)
Full image sqc12412 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12413 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12414 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12435 I41/acd 142 tetragonal {5,3} 32 (2,5)
Full image sqc12436 I41/acd 142 tetragonal {5,3} 32 (2,5)
Full image sqc12437 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12438 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12439 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12440 I41/acd 142 tetragonal {3,5} 32 (2,5)
Full image sqc12441 I41/acd 142 tetragonal {4,4} 32 (2,5)
Full image sqc12442 I41/acd 142 tetragonal {4,3,4} 36 (3,5)
Full image sqc12443 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12444 I41/acd 142 tetragonal {4,4} 32 (2,5)
Full image sqc12449 I41/acd 142 tetragonal {4,4} 32 (2,5)
Full image sqc12450 I41/acd 142 tetragonal {4,4} 32 (2,5)
Full image sqc12455 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12456 I41/acd 142 tetragonal {4,3,4,4} 36 (4,4)
Full image sqc12457 I41/acd 142 tetragonal {4,3,4,4} 36 (4,4)
Full image sqc12458 I41/acd 142 tetragonal {4,4} 32 (2,5)
Full image sqc12459 I41/acd 142 tetragonal {4,4} 32 (2,4)
Full image sqc12460 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12461 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12462 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12463 I41/acd 142 tetragonal {3,3,4} 40 (3,5)
Full image sqc12464 I41/acd 142 tetragonal {4,3,3} 40 (3,5)
Full image sqc12465 I41/acd 142 tetragonal {4,3,4} 36 (3,5)
Full image sqc12466 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12467 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12468 I41/acd 142 tetragonal {3,4,4} 36 (3,5)
Full image sqc12469 I41/acd 142 tetragonal {4,3,4} 36 (3,5)
Full image sqc12470 I41/acd 142 tetragonal {4,3,4} 36 (3,5)
Full image sqc12471 I41/acd 142 tetragonal {4,3,3} 40 (3,4)
Full image sqc12472 I41/acd 142 tetragonal {4,3,3} 40 (3,4)
Full image sqc12473 I41/acd 142 tetragonal {4,3,3} 40 (3,4)
Full image sqc12579 I41/acd 142 tetragonal {16,6,4} 20 (3,5)
Full image sqc12580 I41/acd 142 tetragonal {16,6,4} 20 (3,5)
Full image sqc12581 I41/acd 142 tetragonal {12,3,3} 36 (3,5)
Full image sqc12582 I41/acd 142 tetragonal {12,3,3} 36 (3,5)
Full image sqc12583 I41/acd 142 tetragonal {8,4,3} 36 (3,6)
Full image sqc12584 I41/acd 142 tetragonal {8,4,3} 36 (3,6)
Full image sqc12585 I41/acd 142 tetragonal {3,4,8} 36 (3,6)
Full image sqc12586 I41/acd 142 tetragonal {3,4,8} 36 (3,6)
Full image sqc12587 I41/acd 142 tetragonal {4,3,8} 36 (3,6)
Full image sqc12588 I41/acd 142 tetragonal {4,3,8} 36 (3,6)
Full image sqc12593 I41/acd 142 tetragonal {10,4} 24 (2,5)
Full image sqc12600 I41/acd 142 tetragonal {7,4} 24 (2,5)
Full image sqc12601 I41/acd 142 tetragonal {6,6} 24 (2,5)
Full image sqc12602 I41/acd 142 tetragonal {3,6} 32 (2,5)
Full image sqc12603 I41/acd 142 tetragonal {3,6} 32 (2,6)
Full image sqc12604 I41/acd 142 tetragonal {6,3} 32 (2,6)
Full image sqc12607 I41/acd 142 tetragonal {3,6} 32 (2,5)
Full image sqc12608 I41/acd 142 tetragonal {3,6} 32 (2,5)
Full image sqc12609 I41/acd 142 tetragonal {5,4} 32 (2,6)
Full image sqc12610 I41/acd 142 tetragonal {5,4} 32 (2,5)
Full image sqc12612 I41/acd 142 tetragonal {4,5} 32 (2,5)
Full image sqc12613 I41/acd 142 tetragonal {4,4,4,4} 36 (4,5)
Full image sqc12614 I41/acd 142 tetragonal {4,6,3,4} 36 (4,5)
Full image sqc12620 I41/acd 142 tetragonal {4,4,4,4} 36 (4,5)
Full image sqc12621 I41/acd 142 tetragonal {4,3,3,4} 44 (4,5)
Full image sqc12622 I41/acd 142 tetragonal {4,3,3,4} 44 (4,5)
Full image sqc12624 I41/acd 142 tetragonal {5,8} 24 (2,5)
Full image sqc12625 I41/acd 142 tetragonal {10,4} 24 (2,5)
Full image sqc12626 I41/acd 142 tetragonal {7,4} 24 (2,5)
Full image sqc12628 I41/acd 142 tetragonal {6,3,3} 40 (3,5)
Full image sqc12629 I41/acd 142 tetragonal {5,8} 24 (2,5)
Full image sqc12630 I41/acd 142 tetragonal {5,4} 32 (2,5)
Full image sqc12632 I41/acd 142 tetragonal {5,4} 32 (2,5)
Full image sqc12636 I41/acd 142 tetragonal {8,12,4} 20 (3,5)
Full image sqc12637 I41/acd 142 tetragonal {6,3,3} 40 (3,5)
Full image sqc12638 I41/acd 142 tetragonal {6,3,4,4} 36 (4,5)
Full image sqc12639 I41/acd 142 tetragonal {6,3,3} 40 (3,5)
Full image sqc12640 I41/acd 142 tetragonal {8,3,8} 28 (3,5)
Full image sqc12641 I41/acd 142 tetragonal {8,6,8} 20 (3,5)
Full image sqc12643 I41/acd 142 tetragonal {4,12,4} 28 (3,5)
Full image sqc12644 I41/acd 142 tetragonal {8,12,4} 20 (3,5)
Full image sqc12645 I41/acd 142 tetragonal {4,12,4} 28 (3,5)
Full image sqc12666 I41/acd 142 tetragonal {4,6,8} 28 (3,5)
Full image sqc12667 I41/acd 142 tetragonal {4,6,8} 28 (3,5)
Full image sqc12682 I41/acd 142 tetragonal {8,3,8} 28 (3,5)
Full image sqc12700 I41/acd 142 tetragonal {7,4} 24 (2,5)
Full image sqc12701 I41/acd 142 tetragonal {7,4} 24 (2,5)
Full image sqc12703 I41/acd 142 tetragonal {6,6} 24 (2,5)
Full image sqc12704 I41/acd 142 tetragonal {6,3} 32 (2,6)
Full image sqc12713 I41/acd 142 tetragonal {4,6,4} 32 (3,5)
Full image sqc12718 I41/acd 142 tetragonal {3,6} 32 (2,6)
Full image sqc12719 I41/acd 142 tetragonal {3,6} 32 (2,5)
Full image sqc12721 I41/acd 142 tetragonal {4,6,4} 32 (3,5)
Full image sqc12726 I41/acd 142 tetragonal {6,3,4,4} 36 (4,5)
Full image sqc12729 I41/acd 142 tetragonal {6,3,3} 40 (3,5)