s-net search

Glossary of terms
e.g. sqc5432
any subsequence separated by spaces e.g. 4 12 30
14646 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc6500 P4222 93 tetragonal {4,8,4,4,8} 10 (5,6)
Full image sqc6501 C2/c 15 monoclinic {4,4,4,8,4} 12 (5,8)
Full image sqc6502 Imma 74 orthorhombic {4,4,4,8,4} 12 (5,7)
Full image sqc6503 Imma 74 orthorhombic {4,4,8,4,4} 12 (5,7)
Full image sqc6504 I4/mmm 139 tetragonal {6,8} 8 (2,3)
Full image sqc6505 I4/mmm 139 tetragonal {3,8} 12 (2,3)
Full image sqc6506 I4/mmm 139 tetragonal {8,3} 12 (2,3)
Full image sqc6507 P4/mmm 123 tetragonal {6,8} 8 (2,4)
Full image sqc6508 I4122 98 tetragonal {8,6} 8 (2,5)
Full image sqc6509 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6510 I4/mmm 139 tetragonal {4,6} 12 (2,4)
Full image sqc6511 P42/mmc 131 tetragonal {4,6} 12 (2,4)
Full image sqc6512 P4/mmm 123 tetragonal {6,4} 12 (2,4)
Full image sqc6513 P4/mmm 123 tetragonal {4,6} 12 (2,4)
Full image sqc6514 I41/amd 141 tetragonal {5,4} 12 (2,3)
Full image sqc6515 P4222 93 tetragonal {4,4,8,4,8} 10 (5,6)
Full image sqc6516 P4222 93 tetragonal {3,8} 12 (2,7)
Full image sqc6517 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6518 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6519 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6520 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6521 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6522 Cmma 67 orthorhombic {4,8,4,4,8} 10 (5,6)
Full image sqc6523 C2/c 15 monoclinic {4,4,8,4,4} 12 (5,8)
Full image sqc6524 Imma 74 orthorhombic {4,4,8,4,4} 12 (5,7)
Full image sqc6525 C2/c 15 monoclinic {4,4,8,4,4} 12 (5,8)
Full image sqc6526 Imma 74 orthorhombic {4,4,8,4,4} 12 (5,7)
Full image sqc6527 Cmma 67 orthorhombic {8,3} 12 (2,7)
Full image sqc6528 Fddd 70 orthorhombic {3,8} 12 (2,5)
Full image sqc6529 I4/mmm 139 tetragonal {4,8,4} 10 (3,4)
Full image sqc6530 I41/a 88 tetragonal {12,6,4} 8 (3,4)
Full image sqc6531 I41/amd 141 tetragonal {12,6,4} 8 (3,3)
Full image sqc6532 Imma 74 orthorhombic {3,6,4,4,4,4} 14 (6,6)
Full image sqc6533 C2/c 15 monoclinic {3,6,4,4,4,4} 14 (6,7)
Full image sqc6534 Imma 74 orthorhombic {4,4,4,8,4} 12 (5,7)
Full image sqc6535 C2/c 15 monoclinic {4,4,4,8,4} 12 (5,8)
Full image sqc6536 I212121 24 orthorhombic {4,4,4,8,4} 12 (5,8)
Full image sqc6537 I4122 98 tetragonal {8,3} 12 (2,5)
Full image sqc6538 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6539 P4222 93 tetragonal {6,4} 10 (2,6)
Full image sqc6540 C2/c 15 monoclinic {4,6,6} 10 (3,7)
Full image sqc6541 Fddd 70 orthorhombic {8,6} 8 (2,5)
Full image sqc6542 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6543 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6544 Cmma 67 orthorhombic {6,4} 12 (2,7)
Full image sqc6545 P4222 93 tetragonal {6,4} 10 (2,6)
Full image sqc6546 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc6547 P42/nnm 134 tetragonal {6,4} 10 (2,4)
Full image sqc6548 P-42m 111 tetragonal {4,6} 12 (2,6)
Full image sqc6549 I-42d 122 tetragonal {4,6} 10 (2,4)
Full image sqc6550 Imma 74 orthorhombic {6,4} 12 (2,7)
Full image sqc6551 Imma 74 orthorhombic {6,4} 12 (2,7)
Full image sqc6552 I-4 82 tetragonal {6,4,4} 12 (3,7)
Full image sqc6553 I-4m2 119 tetragonal {6,4} 12 (2,6)
Full image sqc6554 C2/c 15 monoclinic {6,4,4} 12 (3,8)
Full image sqc6555 C2/c 15 monoclinic {6,4,4} 12 (3,8)
Full image sqc6556 Cmma 67 orthorhombic {4,6} 10 (2,6)
Full image sqc6557 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc6558 C2/c 15 monoclinic {4,6,6} 10 (3,7)
Full image sqc6559 I-42d 122 tetragonal {6,4} 12 (2,4)
Full image sqc6560 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6561 Fddd 70 orthorhombic {4,6} 12 (2,5)
Full image sqc6562 I4/mmm 139 tetragonal {6,4} 12 (2,3)
Full image sqc6563 Fddd 70 orthorhombic {6,4} 12 (2,5)
Full image sqc6564 I4/mmm 139 tetragonal {3,6,4} 14 (3,3)
Full image sqc6565 I-42d 122 tetragonal {6,3,4} 14 (3,4)
Full image sqc6566 P4/mmm 123 tetragonal {5,4} 12 (2,4)
Full image sqc6567 I41/a 88 tetragonal {5,4} 12 (2,4)
Full image sqc6568 I-42d 122 tetragonal {5,8} 10 (2,4)
Full image sqc6569 I-42d 122 tetragonal {5,8} 10 (2,4)
Full image sqc6570 P-4m2 115 tetragonal {4,5} 12 (2,6)
Full image sqc6571 I-4 82 tetragonal {4,5,5} 12 (3,7)
Full image sqc6572 P42/mmc 131 tetragonal {5,8} 10 (2,3)
Full image sqc6573 I4/mmm 139 tetragonal {4,5} 12 (2,3)
Full image sqc6574 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6575 P42/nnm 134 tetragonal {4,5} 12 (2,4)
Full image sqc6576 I4122 98 tetragonal {5,4} 12 (2,4)
Full image sqc6577 I41/a 88 tetragonal {5,8} 10 (2,4)
Full image sqc6578 C2/c 15 monoclinic {8,5,5} 10 (3,8)
Full image sqc6579 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6580 Cmma 67 orthorhombic {8,5} 10 (2,7)
Full image sqc6581 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6582 I-4 82 tetragonal {4,5,5} 12 (3,7)
Full image sqc6583 I212121 24 orthorhombic {4,5,5} 12 (3,8)
Full image sqc6584 P4222 93 tetragonal {5,4} 12 (2,7)
Full image sqc6585 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6586 Fddd 70 orthorhombic {5,4} 12 (2,4)
Full image sqc6587 C2/c 15 monoclinic {4,5,5} 12 (3,8)
Full image sqc6588 C2/c 15 monoclinic {4,5,5} 12 (3,8)
Full image sqc6589 P-4m2 115 tetragonal {4,5} 12 (2,6)
Full image sqc6590 Cmma 67 orthorhombic {4,5} 12 (2,7)
Full image sqc6591 I41/a 88 tetragonal {6,4} 12 (2,4)
Full image sqc6592 I41/amd 141 tetragonal {6,4} 12 (2,3)
Full image sqc6593 P42/nnm 134 tetragonal {4,4,3} 16 (3,4)
Full image sqc6594 I41/amd 141 tetragonal {12,4} 10 (2,3)
Full image sqc6595 I4122 98 tetragonal {4,6} 12 (2,5)
Full image sqc6596 P4/mmm 123 tetragonal {4,6} 12 (2,4)
Full image sqc6597 I212121 24 orthorhombic {4,8,4,4,4} 12 (5,8)
Full image sqc6598 C2/c 15 monoclinic {4,8,4,4,4} 12 (5,8)
Full image sqc6599 C2/c 15 monoclinic {4,4,8,4,4} 12 (5,8)