s-net search
|
14646 records listed.
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
|
sqc200
|
|
Pmmm |
47 |
orthorhombic |
{12,6} |
2 |
(2,5) |
|
sqc201
|
|
Pmmm |
47 |
orthorhombic |
{12,3} |
3 |
(2,5) |
|
sqc202
|
|
Pmmm |
47 |
orthorhombic |
{12,3} |
3 |
(2,5) |
|
sqc203
|
|
Pmmm |
47 |
orthorhombic |
{12,3} |
3 |
(2,5) |
|
sqc204
|
|
Pmmm |
47 |
orthorhombic |
{10,4} |
3 |
(2,6) |
|
sqc205
|
|
Pmmm |
47 |
orthorhombic |
{10,4} |
3 |
(2,6) |
|
sqc206
|
|
Pmmm |
47 |
orthorhombic |
{8,10} |
2 |
(2,5) |
|
sqc207
|
|
Pmmm |
47 |
orthorhombic |
{8,10} |
2 |
(2,5) |
|
sqc208
|
|
Pmmm |
47 |
orthorhombic |
{4,10} |
3 |
(2,5) |
|
sqc209
|
|
P222 |
16 |
orthorhombic |
{10,4} |
3 |
(2,5) |
|
sqc210
|
|
Pmmm |
47 |
orthorhombic |
{10,4} |
3 |
(2,5) |
|
sqc211
|
|
P222 |
16 |
orthorhombic |
{3,12} |
3 |
(2,5) |
|
sqc212
|
|
Cmmm |
65 |
orthorhombic |
{3,12} |
3 |
(2,5) |
|
sqc213
|
|
Cmmm |
65 |
orthorhombic |
{12,3} |
3 |
(2,5) |
|
sqc214
|
|
R-3m |
166 |
rhombohedral |
{12,6} |
2 |
(2,2) |
|
sqc215
|
|
Cmmm |
65 |
orthorhombic |
{10,4} |
3 |
(2,5) |
|
sqc216
|
|
P222 |
16 |
orthorhombic |
{12,6} |
2 |
(2,5) |
|
sqc217
|
|
R-3m |
166 |
rhombohedral |
{12,6} |
2 |
(2,2) |
|
sqc218
|
|
Pmmm |
47 |
orthorhombic |
{4,10} |
3 |
(2,6) |
|
sqc219
|
|
Pmmm |
47 |
orthorhombic |
{4,6,8} |
3 |
(3,5) |
|
sqc220
|
|
Pmmm |
47 |
orthorhombic |
{4,6,8} |
3 |
(3,5) |
|
sqc221
|
|
Pmmm |
47 |
orthorhombic |
{8,4,6} |
3 |
(3,5) |
|
sqc222
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc223
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc224
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc225
|
|
Pmmm |
47 |
orthorhombic |
{4,3,8} |
4 |
(3,5) |
|
sqc226
|
|
Pmmm |
47 |
orthorhombic |
{3,8,4} |
4 |
(3,5) |
|
sqc227
|
|
Pmmm |
47 |
orthorhombic |
{5,8} |
3 |
(2,5) |
|
sqc228
|
|
P222 |
16 |
orthorhombic |
{5,8} |
3 |
(2,5) |
|
sqc229
|
|
P222 |
16 |
orthorhombic |
{3,4,8} |
4 |
(3,5) |
|
sqc230
|
|
Pmmm |
47 |
orthorhombic |
{7,4} |
3 |
(2,4) |
|
sqc231
|
|
Cmmm |
65 |
orthorhombic |
{7,4} |
3 |
(2,5) |
|
sqc232
|
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,6) |
|
sqc233
|
|
Pmmm |
47 |
orthorhombic |
{4,7} |
3 |
(2,4) |
|
sqc234
|
|
P4/mmm |
123 |
tetragonal |
{8,10} |
2 |
(2,2) |
|
sqc235
|
|
Pmmm |
47 |
orthorhombic |
{6,8,4} |
3 |
(3,5) |
|
sqc236
|
|
Pmmm |
47 |
orthorhombic |
{8,6,4} |
3 |
(3,5) |
|
sqc237
|
|
Pmmm |
47 |
orthorhombic |
{6,8,4} |
3 |
(3,5) |
|
sqc238
|
|
Pmmm |
47 |
orthorhombic |
{7,4} |
3 |
(2,4) |
|
sqc239
|
|
Pmmm |
47 |
orthorhombic |
{4,3,8} |
4 |
(3,5) |
|
sqc240
|
|
Pmmm |
47 |
orthorhombic |
{3,8,4} |
4 |
(3,5) |
|
sqc241
|
|
Pmmm |
47 |
orthorhombic |
{4,6,8} |
3 |
(3,4) |
|
sqc242
|
|
Pmmm |
47 |
orthorhombic |
{4,8,6} |
3 |
(3,5) |
|
sqc243
|
|
P222 |
16 |
orthorhombic |
{4,8,6} |
3 |
(3,5) |
|
sqc244
|
|
Cmmm |
65 |
orthorhombic |
{4,7} |
3 |
(2,4) |
|
sqc245
|
|
Cmmm |
65 |
orthorhombic |
{7,4} |
3 |
(2,4) |
|
sqc246
|
|
P4/mmm |
123 |
tetragonal |
{10,4} |
3 |
(2,2) |
|
sqc247
|
btu
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc248
|
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc249
|
kag
|
P6/mmm |
191 |
hexagonal |
{6} |
3 |
(1,2) |
|
sqc250
|
|
Cmmm |
65 |
orthorhombic |
{6,6} |
3 |
(2,4) |
|
sqc251
|
|
Pmmm |
47 |
orthorhombic |
{6,3} |
4 |
(2,5) |
|
sqc252
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,6} |
4 |
(4,6) |
|
sqc253
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6,4} |
4 |
(4,6) |
|
sqc254
|
|
P4/mmm |
123 |
tetragonal |
{4,6,4} |
4 |
(3,3) |
|
sqc255
|
|
Pmmm |
47 |
orthorhombic |
{7,4} |
3 |
(2,4) |
|
sqc256
|
|
P222 |
16 |
orthorhombic |
{4,7} |
3 |
(2,4) |
|
sqc257
|
|
Pmmm |
47 |
orthorhombic |
{4,7} |
3 |
(2,4) |
|
sqc258
|
|
P222 |
16 |
orthorhombic |
{4,8,3} |
4 |
(3,5) |
|
sqc259
|
|
Pmmm |
47 |
orthorhombic |
{3,8,4} |
4 |
(3,5) |
|
sqc260
|
|
Pmmm |
47 |
orthorhombic |
{3,4,8} |
4 |
(3,5) |
|
sqc261
|
|
P222 |
16 |
orthorhombic |
{4,3,8} |
4 |
(3,5) |
|
sqc262
|
|
Cmmm |
65 |
orthorhombic |
{6,3} |
4 |
(2,4) |
|
sqc263
|
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc264
|
|
Cmmm |
65 |
orthorhombic |
{6,6} |
3 |
(2,4) |
|
sqc265
|
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc266
|
|
Pmmm |
47 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc267
|
|
Pmmm |
47 |
orthorhombic |
{4,6,4} |
4 |
(3,5) |
|
sqc268
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6} |
4 |
(3,5) |
|
sqc269
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6} |
4 |
(3,5) |
|
sqc270
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6} |
4 |
(3,5) |
|
sqc271
|
|
Pmmm |
47 |
orthorhombic |
{4,6,4} |
4 |
(3,5) |
|
sqc272
|
|
P222 |
16 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc273
|
|
P222 |
16 |
orthorhombic |
{4,6,4} |
4 |
(3,5) |
|
sqc274
|
|
Pmmm |
47 |
orthorhombic |
{6,3} |
4 |
(2,5) |
|
sqc275
|
|
Cmmm |
65 |
orthorhombic |
{6,3} |
4 |
(2,4) |
|
sqc276
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc277
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc278
|
|
Cmmm |
65 |
orthorhombic |
{5,4} |
4 |
(2,5) |
|
sqc279
|
|
Pmmm |
47 |
orthorhombic |
{8,5} |
3 |
(2,5) |
|
sqc280
|
|
Pmmm |
47 |
orthorhombic |
{4,5} |
4 |
(2,5) |
|
sqc281
|
|
Pmmm |
47 |
orthorhombic |
{4,8,3} |
4 |
(3,5) |
|
sqc282
|
|
Pmmm |
47 |
orthorhombic |
{4,4,6} |
4 |
(3,5) |
|
sqc283
|
|
Pmmm |
47 |
orthorhombic |
{6,4,4,4} |
4 |
(4,4) |
|
sqc284
|
yav-d
|
P6/mmm |
191 |
hexagonal |
{4,6} |
4 |
(2,2) |
|
sqc285
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
5 |
(4,4) |
|
sqc286
|
|
Pmmm |
47 |
orthorhombic |
{4,3,4,4} |
5 |
(4,4) |
|
sqc287
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4,4} |
5 |
(4,4) |
|
sqc288
|
|
P222 |
16 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc289
|
|
P222 |
16 |
orthorhombic |
{6,6} |
3 |
(2,5) |
|
sqc290
|
|
P222 |
16 |
orthorhombic |
{6,4,4} |
4 |
(3,5) |
|
sqc291
|
|
P222 |
16 |
orthorhombic |
{4,6,4} |
4 |
(3,5) |
|
sqc292
|
|
Cmmm |
65 |
orthorhombic |
{3,6} |
4 |
(2,4) |
|
sqc293
|
|
Cmmm |
65 |
orthorhombic |
{6,3} |
4 |
(2,4) |
|
sqc294
|
|
P4/mmm |
123 |
tetragonal |
{3,6} |
5 |
(2,3) |
|
sqc295
|
|
Pmmm |
47 |
orthorhombic |
{3,6} |
5 |
(2,4) |
|
sqc296
|
|
I4/mmm |
139 |
tetragonal |
{3,6} |
5 |
(2,3) |
|
sqc297
|
|
Pmmm |
47 |
orthorhombic |
{5,4} |
4 |
(2,5) |
|
sqc298
|
|
Cmmm |
65 |
orthorhombic |
{4,5} |
4 |
(2,4) |
|
sqc299
|
|
P222 |
16 |
orthorhombic |
{4,4,3} |
5 |
(3,5) |
|