U-tiling: UQC1942
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1625 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.3.4.4.3.4.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc559
|
|
Pmmm |
47 |
orthorhombic |
{3,8} |
4 |
(2,6) |
G
|
False
|
|
sqc10257
|
|
Fddd |
70 |
orthorhombic |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4331
|
|
Cmma |
67 |
orthorhombic |
{3,8} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.1:176:100 4 5 105 29 30 20 21 55 122 15 16 127 40 41 66 144 26 27 149 42 43 77 166 37 38 171 88 111 48 49 116 73 74 64 65 89 59 60 94 84 85 155 70 71 160 86 87 133 81 82 138 92 93 139 140 119 120 132 103 104 150 151 130 131 121 114 115 161 162 125 126 172 173 136 137 163 164 176 147 148 174 175 165 158 159 169 170,2 25 6 7 9 11 13 36 17 18 20 22 24 28 29 31 33 35 39 40 42 44 46 69 50 51 53 55 57 80 61 62 64 66 68 72 73 75 77 79 83 84 86 88 90 135 94 95 97 99 101 146 105 106 108 110 112 157 116 117 119 121 123 168 127 128 130 132 134 138 139 141 143 145 149 150 152 154 156 160 161 163 165 167 171 172 174 176,23 3 5 94 8 10 99 34 14 16 116 19 21 121 25 27 138 30 32 143 36 38 160 41 43 165 67 47 49 127 52 54 132 78 58 60 105 63 65 110 69 71 171 74 76 176 80 82 149 85 87 154 133 91 93 96 98 144 102 104 107 109 155 113 115 118 120 166 124 126 129 131 135 137 140 142 146 148 151 153 157 159 162 164 168 170 173 175:4 3 4 4 4 3 4 4 4 4 3 4 4 3 4 4 3 4 4 3 4 3 3 4,3 8 3 8 8 8 3 8 3 8 8 8 3 3 3 3> {(0, 129): 'tau1', (2, 76): 'tau3^-1', (0, 55): 't3^-1', (2, 43): 'tau3', (0, 5): 't3', (2, 32): 'tau2^-1', (0, 151): 't3*tau1^-1*t2^-1', (0, 118): 'tau1^-1', (0, 163): 't2^-1*tau1^-1*t3', (0, 130): 'tau1', (0, 174): 't2*tau1*t3^-1', (1, 112): 't2', (0, 171): 't2', (0, 138): 't3^-1', (0, 32): 't1^-1', (0, 164): 'tau3^-1*t1^-1*tau2', (2, 121): 't2^-1', (0, 149): 't3', (2, 88): 't3', (0, 11): 't2', (0, 161): 't2^-1', (0, 172): 't2', (2, 27): 'tau2^-1', (1, 123): 't2^-1', (2, 82): 'tau2', (0, 150): 't3', (0, 162): 't2^-1*tau1^-1*t3', (2, 87): 'tau2', (2, 110): 't2', (0, 160): 't2^-1', (2, 99): 't3^-1', (0, 49): 't2^-1', (0, 16): 't2', (0, 60): 't3^-1', (1, 90): 't3', (0, 43): 't1^-1', (2, 71): 'tau3^-1', (0, 119): 'tau1^-1', (2, 38): 'tau3', (0, 175): 'tau3*t1*tau2^-1', (1, 101): 't3^-1', (0, 139): 't3^-1', (0, 0): 't3', (0, 44): 't2^-1', }