U-tiling: UQC1946
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1625 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.3.4.4.3.4.4}{3.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc559
|
|
Pmmm |
47 |
orthorhombic |
{3,8} |
4 |
(2,6) |
G
|
False
|
|
sqc10408
|
|
Fddd |
70 |
orthorhombic |
{3,8} |
16 |
(2,7) |
D
|
False
|
|
sqc4378
|
|
Cmma |
67 |
orthorhombic |
{8,3} |
8 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.3.4.4.3.4.4}{3.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<61.2:176:89 4 5 94 106 107 31 32 22 111 15 16 116 128 129 42 43 133 26 27 138 150 151 44 155 37 38 160 172 173 122 48 49 127 117 118 75 76 66 100 59 60 105 95 96 86 87 166 70 71 171 161 162 88 144 81 82 149 139 140 92 93 141 142 121 103 104 152 153 132 114 115 163 164 125 126 174 175 136 137 165 147 148 176 158 159 169 170,2 102 6 7 9 11 13 124 17 18 20 22 24 146 28 29 31 33 35 168 39 40 42 44 46 113 50 51 53 55 57 91 61 62 64 66 68 157 72 73 75 77 79 135 83 84 86 88 90 94 95 97 99 101 105 106 108 110 112 116 117 119 121 123 127 128 130 132 134 138 139 141 143 145 149 150 152 154 156 160 161 163 165 167 171 172 174 176,100 3 5 50 8 10 55 122 14 16 61 19 21 66 144 25 27 72 30 32 77 166 36 38 83 41 43 88 111 47 49 52 54 89 58 60 63 65 155 69 71 74 76 133 80 82 85 87 91 93 127 96 98 132 102 104 116 107 109 121 113 115 118 120 124 126 129 131 135 137 171 140 142 176 146 148 160 151 153 165 157 159 162 164 168 170 173 175:4 3 4 4 4 3 4 4 3 4 3 4 3 4 4 4 3 4 4 3 4 3 4 4,3 8 3 8 3 8 3 8 3 3 3 3 8 8 8 8> {(2, 175): 'tau3*t1*tau2^-1', (0, 129): 't2^-1', (2, 43): 't1^-1', (0, 140): 't3^-1', (2, 164): 'tau3^-1*t1^-1*tau2', (0, 154): 'tau3^-1', (2, 32): 't1^-1', (0, 137): 'tau2', (0, 151): 't3', (0, 163): 't2^-1', (0, 174): 't2', (0, 62): 't3^-1', (2, 55): 't3^-1', (0, 6): 't3', (0, 159): 'tau3^-1', (1, 112): 't2', (0, 152): 't3', (0, 164): 't2^-1*tau1^-1*t3', (0, 17): 't2', (0, 61): 't3^-1', (0, 128): 't2^-1', (0, 143): 'tau2^-1', (2, 27): 't1^-1', (0, 51): 't2^-1', (1, 57): 't3^-1', (2, 148): 'tau2^-1*t1*tau3', (1, 123): 't2^-1', (0, 162): 't2^-1', (1, 2): 't3', (2, 110): 't2', (0, 97): 't3', (0, 170): 'tau3', (2, 11): 't2', (2, 0): 't3', (0, 148): 'tau2^-1', (2, 38): 't1^-1', (0, 131): 'tau1', (0, 175): 't2*tau1*t3^-1', (0, 7): 't3', (0, 50): 't2^-1', (2, 170): 'tau3*t1*tau2^-1', (0, 120): 'tau1^-1', (0, 165): 'tau3', (0, 132): 'tau2', }