U-tiling: UQC2077
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1672 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.4.3.3.4.4.4}{4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc3399
|
|
Fmmm |
69 |
orthorhombic |
{7,3} |
8 |
(2,6) |
G
|
False
|
|
sqc10259
|
|
Fddd |
70 |
orthorhombic |
{8,3} |
16 |
(2,7) |
D
|
False
|
|
sqc588
|
|
Pmmm |
47 |
orthorhombic |
{3,8} |
4 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.4.3.3.4.4.4}{4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<62.2:176:89 4 5 50 51 52 20 21 33 111 15 16 61 62 63 44 133 26 27 72 73 74 42 43 155 37 38 83 84 85 122 48 49 64 65 77 100 59 60 88 166 70 71 86 87 144 81 82 92 93 127 128 129 119 120 143 103 104 116 117 118 130 131 154 114 115 165 125 126 176 136 137 171 172 173 163 164 147 148 160 161 162 174 175 158 159 169 170,2 7 92 6 9 11 13 18 114 17 20 22 24 29 136 28 31 33 35 40 158 39 42 44 46 51 125 50 53 55 57 62 103 61 64 66 68 73 169 72 75 77 79 84 147 83 86 88 90 95 94 97 99 101 106 105 108 110 112 117 116 119 121 123 128 127 130 132 134 139 138 141 143 145 150 149 152 154 156 161 160 163 165 167 172 171 174 176,100 3 5 94 8 10 110 122 14 16 116 19 21 132 144 25 27 138 30 32 154 166 36 38 160 41 43 176 111 47 49 127 52 54 121 89 58 60 105 63 65 99 155 69 71 171 74 76 165 133 80 82 149 85 87 143 91 93 96 98 102 104 107 109 113 115 118 120 124 126 129 131 135 137 140 142 146 148 151 153 157 159 162 164 168 170 173 175:3 4 4 4 3 4 3 4 4 3 4 3 4 3 3 3 4 4 4 4 4 4 4 4,8 3 8 3 8 3 8 3 8 3 8 3 8 3 8 3> {(0, 29): 't1^-1', (0, 129): 'tau1', (0, 173): 't2*tau1*t3^-1', (2, 10): 't3', (2, 98): 't3', (0, 154): 'tau3^-1', (1, 25): 'tau2^-1', (0, 118): 'tau1^-1', (0, 163): 't2^-1*tau1^-1*t3', (0, 130): 'tau1', (0, 174): 't2*tau1*t3^-1', (0, 27): 't1^-1', (2, 55): 't3^-1', (0, 39): 't1^-1', (0, 159): 'tau3^-1*t1^-1*tau2', (0, 171): 'tau3*t1*tau2^-1', (0, 164): 't2^-1', (0, 28): 't1^-1', (0, 40): 't1^-1', (0, 161): 'tau3^-1*t1^-1*tau2', (0, 172): 'tau3*t1*tau2^-1', (0, 143): 'tau2^-1', (2, 27): 'tau2^-1', (2, 82): 'tau2', (0, 162): 't2^-1*tau1^-1*t3', (2, 54): 't2^-1', (0, 38): 't1^-1', (2, 21): 't2', (2, 110): 't2', (1, 36): 'tau3', (0, 170): 'tau3*t1*tau2^-1', (2, 11): 't2', (2, 0): 't3', (2, 71): 'tau3^-1', (0, 119): 'tau1^-1', (2, 38): 'tau3', (0, 175): 't2', (0, 142): 't3^-1', (0, 160): 'tau3^-1*t1^-1*tau2', (1, 80): 'tau2', (1, 69): 'tau3^-1', (0, 153): 't3', (0, 165): 'tau3', (0, 132): 'tau2', }