U-tiling: UQC2080
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1672 |
*22222 |
(2,6,4) |
{8,3} |
{4.4.4.3.3.4.4.4}{4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4238
|
|
Fmmm |
69 |
orthorhombic |
{8,3} |
8 |
(2,6) |
G
|
False
|
|
sqc10248
|
|
Fddd |
70 |
orthorhombic |
{8,3} |
16 |
(2,7) |
D
|
False
|
|
sqc560
|
|
Pmmm |
47 |
orthorhombic |
{3,8} |
4 |
(2,6) |
Topological data
Vertex degrees | {8,3} |
2D vertex symbol | {4.4.4.3.3.4.4.4}{4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<62.1:176:100 4 5 94 95 96 53 54 22 122 15 16 116 117 118 64 65 144 26 27 138 139 140 75 76 44 166 37 38 160 161 162 86 87 111 48 49 127 128 129 66 89 59 60 105 106 107 155 70 71 171 172 173 88 133 81 82 149 150 151 92 93 130 131 121 103 104 119 120 132 114 115 125 126 136 137 174 175 165 147 148 163 164 176 158 159 169 170,2 7 103 6 9 11 13 18 125 17 20 22 24 29 147 28 31 33 35 40 169 39 42 44 46 51 114 50 53 55 57 62 92 61 64 66 68 73 158 72 75 77 79 84 136 83 86 88 90 95 94 97 99 101 106 105 108 110 112 117 116 119 121 123 128 127 130 132 134 139 138 141 143 145 150 149 152 154 156 161 160 163 165 167 172 171 174 176,23 3 5 105 8 10 33 34 14 16 127 19 21 44 25 27 149 30 32 36 38 171 41 43 67 47 49 116 52 54 77 78 58 60 94 63 65 88 69 71 160 74 76 80 82 138 85 87 133 91 93 96 98 143 144 102 104 107 109 154 155 113 115 118 120 165 166 124 126 129 131 176 135 137 140 142 146 148 151 153 157 159 162 164 168 170 173 175:3 4 4 4 3 4 4 3 4 4 4 3 4 4 3 4 3 4 3 4 3 4 4 4,8 3 8 3 3 3 8 3 8 3 3 3 8 8 8 8> {(1, 91): 't3', (0, 41): 't1^-1', (2, 109): 't3^-1', (0, 84): 'tau2', (0, 55): 't3^-1', (0, 173): 'tau3*t1*tau2^-1', (2, 131): 't2^-1', (2, 98): 't3', (0, 137): 'tau2', (0, 30): 't1^-1', (0, 42): 't1^-1', (0, 174): 'tau3*t1*tau2^-1', (0, 159): 'tau3^-1', (0, 171): 'tau3', (0, 138): 'tau2', (0, 109): 'tau1^-1', (0, 152): 'tau2^-1*t1*tau3', (0, 164): 't2^-1*tau1^-1*t3', (2, 121): 't2^-1', (0, 149): 'tau2^-1', (2, 88): 't3', (0, 11): 't2', (0, 161): 'tau3^-1', (0, 172): 'tau3', (2, 60): 't3^-1', (2, 49): 't2^-1', (2, 16): 't2', (0, 162): 'tau3^-1*t1^-1*tau2', (2, 110): 't2', (1, 113): 't2', (0, 170): 'tau3', (1, 102): 't3^-1', (2, 99): 't3^-1', (0, 31): 't1^-1', (2, 120): 't2', (0, 148): 'tau2^-1', (0, 160): 'tau3^-1', (2, 5): 't3', (1, 124): 't2^-1', (0, 175): 't2*tau1*t3^-1', (0, 139): 'tau2', (0, 0): 't3', (0, 44): 't2^-1', (0, 120): 'tau1^-1', }