U-tiling: UQC2242
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1738 |
*22222 |
(2,6,4) |
{5,6} |
{4.4.3.4.4}{4.4.4.4.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc4278
|
|
Fmmm |
69 |
orthorhombic |
{5,6} |
8 |
(2,6) |
G
|
False
|
|
sqc10295
|
|
Fddd |
70 |
orthorhombic |
{6,5} |
16 |
(2,7) |
D
|
False
|
|
sqc611
|
|
Pmmm |
47 |
orthorhombic |
{6,5} |
4 |
(2,6) |
Topological data
Vertex degrees | {5,6} |
2D vertex symbol | {4.4.3.4.4}{4.4.4.4.3.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<65.1:176:100 4 5 50 51 96 53 54 22 122 15 16 61 62 118 64 65 144 26 27 72 73 140 75 76 44 166 37 38 83 84 162 86 87 111 48 49 129 66 89 59 60 107 155 70 71 173 88 133 81 82 151 92 93 127 128 130 131 121 103 104 116 117 119 120 132 114 115 125 126 136 137 171 172 174 175 165 147 148 160 161 163 164 176 158 159 169 170,2 9 103 6 8 11 13 20 125 17 19 22 24 31 147 28 30 33 35 42 169 39 41 44 46 53 114 50 52 55 57 64 92 61 63 66 68 75 158 72 74 77 79 86 136 83 85 88 90 97 94 96 99 101 108 105 107 110 112 119 116 118 121 123 130 127 129 132 134 141 138 140 143 145 152 149 151 154 156 163 160 162 165 167 174 171 173 176,23 3 5 7 107 10 33 34 14 16 18 129 21 44 25 27 29 151 32 36 38 40 173 43 67 47 49 51 118 54 77 78 58 60 62 96 65 88 69 71 73 162 76 80 82 84 140 87 133 91 93 95 98 143 144 102 104 106 109 154 155 113 115 117 120 165 166 124 126 128 131 176 135 137 139 142 146 148 150 153 157 159 161 164 168 170 172 175:3 4 4 4 3 4 4 3 4 4 4 3 4 4 3 3 3 3 4 4 4 4 4 4,6 5 6 5 5 5 6 5 6 5 5 5 6 6 6 6> {(1, 91): 't3', (0, 41): 't1^-1', (2, 109): 't3^-1', (2, 7): 't3', (0, 55): 't3^-1', (0, 173): 'tau3*t1*tau2^-1', (1, 3): 't3', (2, 131): 't2^-1', (2, 98): 't3', (0, 30): 't1^-1', (0, 42): 't1^-1', (0, 163): 'tau3^-1*t1^-1*tau2', (0, 174): 'tau3*t1*tau2^-1', (0, 27): 't1^-1', (0, 39): 't1^-1', (0, 159): 'tau3^-1*t1^-1*tau2', (0, 171): 'tau3*t1*tau2^-1', (0, 164): 't2^-1*tau1^-1*t3', (0, 28): 't1^-1', (2, 121): 't2^-1', (2, 88): 't3', (0, 11): 't2', (0, 161): 'tau3^-1', (0, 172): 'tau3', (0, 150): 'tau2^-1', (0, 162): 'tau3^-1*t1^-1*tau2', (0, 38): 't1^-1', (2, 110): 't2', (1, 113): 't2', (0, 170): 'tau3*t1*tau2^-1', (2, 62): 't3^-1', (2, 99): 't3^-1', (0, 31): 't1^-1', (2, 51): 't2^-1', (2, 120): 't2', (2, 18): 't2', (0, 160): 'tau3^-1*t1^-1*tau2', (0, 131): 'tau1', (1, 124): 't2^-1', (0, 175): 't2*tau1*t3^-1', (0, 139): 'tau2', (0, 0): 't3', (0, 44): 't2^-1', (0, 120): 'tau1^-1', }