U-tiling: UQC2547
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc749
|
|
Pmmm |
47 |
orthorhombic |
{5,7} |
4 |
(2,6) |
G
|
False
|
|
sqc10782
|
|
Fddd |
70 |
orthorhombic |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc5086
|
|
Cmma |
67 |
orthorhombic |
{5,7} |
8 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.1:192:109 98 99 6 7 32 33 22 23 60 133 122 123 18 19 44 45 72 157 146 147 30 31 46 47 84 181 170 171 42 43 96 121 134 135 54 55 80 81 70 71 97 110 111 66 67 92 93 169 182 183 78 79 94 95 145 158 159 90 91 102 103 152 153 130 131 144 114 115 164 165 142 143 132 126 127 176 177 138 139 188 189 150 151 178 179 192 162 163 190 191 180 174 175 186 187,2 4 29 102 8 10 12 14 16 41 126 20 22 24 26 28 150 32 34 36 38 40 174 44 46 48 50 52 77 138 56 58 60 62 64 89 114 68 70 72 74 76 186 80 82 84 86 88 162 92 94 96 98 100 149 104 106 108 110 112 161 116 118 120 122 124 173 128 130 132 134 136 185 140 142 144 146 148 152 154 156 158 160 164 166 168 170 172 176 178 180 182 184 188 190 192,25 3 5 7 9 11 108 37 15 17 19 21 23 132 27 29 31 33 35 156 39 41 43 45 47 180 73 51 53 55 57 59 144 85 63 65 67 69 71 120 75 77 79 81 83 192 87 89 91 93 95 168 145 99 101 103 105 107 157 111 113 115 117 119 169 123 125 127 129 131 181 135 137 139 141 143 147 149 151 153 155 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 4 3 3 4 3 4 4 3 3 3 4 3 3 3 3 3 4 4 3 4 3 3 4,5 7 5 7 7 7 5 7 5 7 7 7 5 5 5 5> {(0, 179): 'tau3^-1*t1^-1*tau2', (0, 146): 'tau2', (1, 77): 'tau3^-1', (0, 190): 't2*tau1*t3^-1', (0, 129): 'tau1^-1', (0, 187): 't2', (0, 48): 't2^-1', (0, 169): 'tau3^-1', (2, 83): 'tau3^-1', (0, 151): 't3^-1', (0, 163): 't3', (0, 130): 'tau1^-1', (0, 177): 't2^-1*tau1^-1*t3', (0, 188): 't2', (1, 112): 't3^-1', (0, 47): 't1^-1', (0, 152): 't3^-1', (0, 164): 't3', (1, 89): 'tau2', (0, 178): 't2^-1*tau1^-1*t3', (2, 108): 't3^-1', (0, 157): 'tau2^-1', (2, 47): 'tau3', (1, 29): 'tau2^-1', (0, 176): 't2^-1', (1, 184): 't2', (0, 191): 'tau3*t1*tau2^-1', (0, 158): 'tau2^-1', (0, 170): 'tau3^-1', (0, 141): 'tau1', (0, 35): 't1^-1', (1, 41): 'tau3', (2, 95): 'tau2', (0, 60): 't3^-1', (0, 181): 'tau3', (2, 120): 't2', (1, 124): 't2', (0, 175): 't2^-1', (0, 142): 'tau1', (0, 145): 'tau2', (0, 189): 't2*tau1*t3^-1', (2, 96): 't3', (2, 180): 't2', (1, 100): 't3', (0, 0): 't3', (0, 182): 'tau3', (2, 35): 'tau2^-1', (0, 132): 't2^-1', }