U-tiling: UQC2548
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5085
|
|
Fmmm |
69 |
orthorhombic |
{7,5} |
8 |
(2,6) |
G
|
False
|
|
sqc10874
|
|
Fddd |
70 |
orthorhombic |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc749
|
|
Pmmm |
47 |
orthorhombic |
{5,7} |
4 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.4:192:13 26 27 6 7 56 57 106 107 120 38 39 18 19 68 69 130 131 144 37 30 31 80 81 154 155 168 42 43 92 93 178 179 192 61 74 75 54 55 142 143 132 86 87 66 67 118 119 108 85 78 79 190 191 180 90 91 166 167 156 121 146 147 102 103 140 141 133 158 159 114 115 128 129 170 171 126 127 182 183 138 139 169 150 151 188 189 181 162 163 176 177 174 175 186 187,2 4 53 30 8 10 12 14 16 65 42 20 22 24 26 28 77 32 34 36 38 40 89 44 46 48 50 52 78 56 58 60 62 64 90 68 70 72 74 76 80 82 84 86 88 92 94 96 98 100 137 150 104 106 108 110 112 125 162 116 118 120 122 124 174 128 130 132 134 136 186 140 142 144 146 148 185 152 154 156 158 160 173 164 166 168 170 172 176 178 180 182 184 188 190 192,49 3 5 7 9 11 36 61 15 17 19 21 23 48 73 27 29 31 33 35 85 39 41 43 45 47 51 53 55 57 59 84 63 65 67 69 71 96 75 77 79 81 83 87 89 91 93 95 133 99 101 103 105 107 156 121 111 113 115 117 119 168 123 125 127 129 131 180 135 137 139 141 143 192 181 147 149 151 153 155 169 159 161 163 165 167 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 3 3 4 4 3 4 4 3 4 4 4 3 3 4 3 3 4 3 3 3 3 3 3,5 7 5 7 5 5 7 7 5 7 5 7 7 7 5 5> {(2, 155): 't3^-1', (0, 158): 't3', (1, 185): 't2', (0, 146): 't3^-1', (0, 190): 'tau3', (0, 187): 'tau3*t1*tau2^-1', (0, 154): 'tau2', (0, 166): 'tau2^-1', (1, 125): 't2', (0, 177): 'tau3^-1', (0, 188): 'tau3*t1*tau2^-1', (1, 172): 'tau3^-1*t1^-1*tau2', (2, 179): 't2^-1', (1, 101): 't3', (1, 40): 't1^-1', (0, 178): 'tau3^-1', (2, 180): 'tau3*t1*tau2^-1', (0, 11): 't3', (0, 143): 't2^-1', (0, 157): 't3', (0, 169): 't2^-1', (0, 107): 't3', (2, 36): 't1^-1', (2, 156): 'tau2^-1*t1*tau3', (0, 176): 'tau3^-1*t1^-1*tau2', (1, 184): 'tau3*t1*tau2^-1', (1, 76): 't1', (2, 24): 't1^-1', (1, 113): 't3^-1', (0, 170): 't2^-1', (0, 31): 't1^-1', (0, 181): 't2', (0, 43): 't1^-1', (0, 131): 't2', (2, 191): 't2', (0, 175): 'tau3^-1*t1^-1*tau2', (0, 145): 't3^-1', (0, 189): 'tau3', (0, 156): 't3*tau1^-1*t2^-1', (0, 32): 't1^-1', (0, 168): 't2^-1*tau1^-1*t3', (0, 182): 't2', (0, 44): 't1^-1', (0, 153): 'tau2', (0, 120): 'tau1^-1', (0, 165): 'tau2^-1', (0, 132): 'tau1', (2, 119): 't3^-1', }