U-tiling: UQC2550
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1925 |
*22222 |
(2,6,5) |
{7,5} |
{4.4.3.3.3.4.4}{3.3.4.4.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc749
|
|
Pmmm |
47 |
orthorhombic |
{5,7} |
4 |
(2,6) |
G
|
False
|
|
sqc10875
|
|
Fddd |
70 |
orthorhombic |
{5,7} |
16 |
(2,7) |
D
|
False
|
|
sqc5130
|
|
Cmma |
67 |
orthorhombic |
{7,5} |
8 |
(2,6) |
Topological data
Vertex degrees | {7,5} |
2D vertex symbol | {4.4.3.3.3.4.4}{3.3.4.4.3} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<68.2:192:97 50 51 6 7 116 117 34 35 24 121 62 63 18 19 140 141 46 47 145 74 75 30 31 164 165 48 169 86 87 42 43 188 189 133 54 55 128 129 82 83 72 109 66 67 104 105 94 95 181 78 79 176 177 96 157 90 91 152 153 134 135 102 103 154 155 132 122 123 114 115 166 167 144 126 127 178 179 138 139 190 191 182 183 150 151 180 170 171 162 163 192 174 175 186 187,2 4 113 54 8 10 12 14 16 137 66 20 22 24 26 28 161 78 32 34 36 38 40 185 90 44 46 48 50 52 125 56 58 60 62 64 101 68 70 72 74 76 173 80 82 84 86 88 149 92 94 96 98 100 138 104 106 108 110 112 126 116 118 120 122 124 128 130 132 134 136 140 142 144 146 148 186 152 154 156 158 160 174 164 166 168 170 172 176 178 180 182 184 188 190 192,109 3 5 7 9 11 60 133 15 17 19 21 23 72 157 27 29 31 33 35 84 181 39 41 43 45 47 96 121 51 53 55 57 59 97 63 65 67 69 71 169 75 77 79 81 83 145 87 89 91 93 95 99 101 103 105 107 144 111 113 115 117 119 132 123 125 127 129 131 135 137 139 141 143 147 149 151 153 155 192 159 161 163 165 167 180 171 173 175 177 179 183 185 187 189 191:4 3 3 4 4 4 3 3 4 4 3 3 4 3 3 3 4 4 3 4 3 3 3 4 3 4 3 3,5 7 5 7 5 7 5 7 5 5 5 5 7 7 7 7> {(0, 103): 't3', (0, 179): 't2^-1*tau1^-1*t3', (1, 124): 't2', (0, 146): 'tau2*t1^-1*tau3^-1', (1, 77): 't1', (0, 190): 't2', (0, 55): 't2^-1', (0, 140): 't2^-1', (0, 154): 't3^-1', (0, 166): 't3', (0, 180): 'tau3', (0, 8): 't3', (0, 68): 't3^-1', (0, 177): 't2^-1', (0, 144): 'tau2', (2, 179): 'tau3^-1*t1^-1*tau2', (1, 4): 't3', (2, 12): 't2', (1, 185): 'tau3*t1*tau2^-1', (1, 89): 't1', (0, 178): 't2^-1', (0, 128): 't2', (0, 25): 't1^-1', (0, 143): 'tau1', (0, 37): 't1^-1', (2, 60): 't3^-1', (0, 157): 'tau2^-1*t1*tau3', (2, 47): 't1^-1', (0, 26): 't1^-1', (0, 38): 't1^-1', (0, 191): 't2*tau1*t3^-1', (1, 173): 'tau3^-1*t1^-1*tau2', (1, 16): 't2', (0, 170): 'tau3^-1*t1^-1*tau2', (2, 0): 't3', (0, 181): 'tau3*t1*tau2^-1', (0, 131): 'tau1^-1', (2, 191): 'tau3*t1*tau2^-1', (0, 165): 't3', (0, 7): 't3', (0, 189): 't2', (0, 156): 'tau2^-1', (0, 168): 'tau3^-1', (0, 139): 't2^-1', (1, 100): 't3', (2, 48): 't2^-1', (0, 153): 't3^-1', (2, 35): 't1^-1', }