U-tiling: UQC2748
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2146 |
*22222 |
(2,6,5) |
{4,10} |
{4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc752
|
|
Pmmm |
47 |
orthorhombic |
{4,8} |
5 |
(2,6) |
G
|
False
|
|
sqc11324
|
|
Fddd |
70 |
orthorhombic |
{10,4,4} |
20 |
(3,7) |
D
|
False
|
|
sqc5750
|
|
Cmma |
67 |
orthorhombic |
{4,10} |
10 |
(2,6) |
Topological data
Vertex degrees | {10,4} |
2D vertex symbol | {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<22.5:208:27 119 120 6 7 125 126 114 115 64 65 40 145 146 19 20 151 152 140 141 77 78 171 172 32 33 177 178 166 167 90 91 197 198 45 46 203 204 192 193 103 104 79 132 133 58 59 138 139 153 154 92 106 107 71 72 112 113 127 128 184 185 84 85 190 191 205 206 158 159 97 98 164 165 179 180 157 110 111 155 156 170 123 124 142 143 183 136 137 196 149 150 162 163 207 208 175 176 194 195 188 189 201 202,2 4 57 8 13 10 12 15 17 70 21 26 23 25 28 30 83 34 39 36 38 41 43 96 47 52 49 51 54 56 60 65 62 64 67 69 73 78 75 77 80 82 86 91 88 90 93 95 99 104 101 103 106 108 148 112 117 114 116 119 121 135 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 200 164 169 166 168 171 173 187 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,14 3 5 7 9 11 13 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 92 81 83 85 87 89 91 94 96 98 100 102 104 131 107 109 111 113 115 117 144 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 183 159 161 163 165 167 169 196 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 3 4 4 4 4 3 4 4 4 3 4 4 4 3 4 4 4 4 4 4 4 4 3 3 3 3,10 4 4 10 4 4 4 4 4 4 10 4 4 4 4 10 4 4 4 4> {(0, 179): 'tau2^-1', (0, 8): 't3', (0, 111): 't3', (0, 166): 'tau2', (0, 137): 't2', (0, 180): 'tau2^-1*t1*tau3', (0, 192): 'tau3^-1', (1, 199): 'tau3*t1*tau2^-1', (0, 144): 't2^-1', (0, 138): 't2', (2, 169): 't3*tau1^-1*t2^-1', (0, 178): 'tau2^-1', (1, 186): 'tau3^-1*t1^-1*tau2', (0, 205): 'tau3', (0, 143): 't2^-1', (0, 37): 't1^-1', (2, 130): 'tau1^-1', (0, 51): 't1^-1', (0, 169): 't3', (0, 1): 't3', (0, 150): 't2^-1', (1, 95): 't1', (0, 38): 't1^-1', (0, 191): 'tau3^-1', (1, 82): 't1', (0, 2): 't3', (2, 156): 't3^-1*tau1*t2', (0, 167): 'tau2*t1^-1*tau3^-1', (2, 117): 'tau1^-1', (0, 105): 't3', (0, 181): 'tau2^-1*t1*tau3', (0, 131): 't2', (0, 204): 'tau3', (0, 145): 't2^-1', (0, 7): 't3', (0, 112): 't3', (0, 156): 't3^-1', (0, 50): 't1^-1', (0, 168): 'tau2*t1^-1*tau3^-1', (0, 21): 't2', (0, 106): 't3', (0, 182): 't2^-1', (0, 165): 'tau2', (0, 132): 't2', }