U-tiling: UQC2749
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2146 |
*22222 |
(2,6,5) |
{4,10} |
{4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
G
|
False
|
|
sqc11307
|
|
Fddd |
70 |
orthorhombic |
{10,4,4} |
20 |
(3,7) |
D
|
False
|
|
sqc980
|
|
Pmmm |
47 |
orthorhombic |
{4,10} |
5 |
(2,6) |
Topological data
Vertex degrees | {10,4} |
2D vertex symbol | {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<22.3:208:53 15 16 6 7 21 22 36 37 129 130 66 19 20 49 50 155 156 79 41 42 32 33 47 48 181 182 92 45 46 207 208 67 68 58 59 73 74 88 89 142 143 71 72 101 102 116 117 93 94 84 85 99 100 194 195 97 98 168 169 144 132 133 110 111 138 139 166 167 131 145 146 123 124 151 152 179 180 136 137 192 193 149 150 205 206 196 184 185 162 163 190 191 183 197 198 175 176 203 204 188 189 201 202,2 4 122 8 13 10 12 15 17 148 21 26 23 25 28 30 174 34 39 36 38 41 43 200 47 52 49 51 54 56 135 60 65 62 64 67 69 109 73 78 75 77 80 82 187 86 91 88 90 93 95 161 99 104 101 103 106 108 112 117 114 116 119 121 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 164 169 166 168 171 173 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,105 3 5 7 9 11 13 131 16 18 20 22 24 26 157 29 31 33 35 37 39 183 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 196 81 83 85 87 89 91 170 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 3 4 4 3 4 4 4 3 3 4 3 4 4 3 4 4 3 3 4 4 4 4 4 4 4 4,10 4 10 4 10 4 10 4 4 4 4 4 4 4 4 4 4 4 4 4> {(0, 179): 't3', (0, 190): 't2^-1*tau1^-1*t3', (1, 17): 't2', (0, 129): 't3^-1', (0, 140): 't2', (0, 154): 't2^-1', (1, 56): 't2^-1', (0, 166): 't3^-1', (0, 137): 'tau1^-1', (0, 151): 'tau1', (0, 177): 't3*tau1^-1*t2^-1', (0, 39): 't1^-1', (0, 144): 'tau1', (2, 91): 'tau2', (0, 115): 't3', (2, 78): 'tau3^-1', (0, 171): 't3*tau1^-1*t2^-1', (0, 138): 'tau1^-1', (0, 152): 't2^-1', (0, 178): 't3', (0, 116): 't3', (2, 39): 'tau3', (0, 128): 't3^-1', (0, 183): 't2^-1*tau1^-1*t3', (0, 150): 'tau1', (0, 195): 'tau3*t1*tau2^-1', (0, 26): 't1^-1', (0, 176): 't3*tau1^-1*t2^-1', (0, 191): 't2^-1', (0, 170): 't3*tau1^-1*t2^-1', (0, 141): 't2', (0, 184): 't2^-1*tau1^-1*t3', (0, 155): 't2^-1', (1, 121): 't3^-1', (0, 131): 'tau1^-1', (0, 142): 't2', (0, 145): 'tau1', (0, 189): 't2^-1*tau1^-1*t3', (2, 26): 'tau2^-1', (1, 69): 't3^-1', (0, 182): 'tau3^-1*t1^-1*tau2', (0, 153): 't2^-1', (0, 165): 't3^-1', (0, 132): 'tau1^-1', }