U-tiling: UQC2750
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2146 |
*22222 |
(2,6,5) |
{4,10} |
{4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc5609
|
|
Fmmm |
69 |
orthorhombic |
{4,9} |
10 |
(2,6) |
G
|
False
|
|
sqc11308
|
|
Fddd |
70 |
orthorhombic |
{10,4,4} |
20 |
(3,7) |
D
|
True
|
|
sqc752
|
|
Pmmm |
47 |
orthorhombic |
{4,8} |
5 |
(2,6) |
Topological data
Vertex degrees | {10,4} |
2D vertex symbol | {4.4.3.4}{3.4.4.4.4.3.4.4.4.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<22.1:208:118 106 107 6 7 112 113 62 63 25 26 144 132 133 19 20 138 139 75 76 170 158 159 32 33 164 165 88 89 51 52 196 184 185 45 46 190 191 101 102 131 145 146 58 59 151 152 77 78 105 119 120 71 72 125 126 183 197 198 84 85 203 204 103 104 157 171 172 97 98 177 178 110 111 153 154 142 143 123 124 140 141 155 156 136 137 149 150 162 163 205 206 194 195 175 176 192 193 207 208 188 189 201 202,2 4 18 8 13 10 12 15 17 21 26 23 25 28 30 44 34 39 36 38 41 43 47 52 49 51 54 56 70 60 65 62 64 67 69 73 78 75 77 80 82 96 86 91 88 90 93 95 99 104 101 103 106 108 135 112 117 114 116 119 121 148 125 130 127 129 132 134 138 143 140 142 145 147 151 156 153 155 158 160 187 164 169 166 168 171 173 200 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,27 3 5 7 9 11 13 40 16 18 20 22 24 26 29 31 33 35 37 39 42 44 46 48 50 52 79 55 57 59 61 63 65 92 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 157 107 109 111 113 115 117 170 120 122 124 126 128 130 183 133 135 137 139 141 143 196 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 3 4 4 4 4 4 4 4 3 4 4 4 4 4 4 3 4 4 3 4 3 4 3 3 4 3,10 4 4 4 4 10 4 4 4 4 10 4 10 4 4 4 4 4 4 4> {(0, 179): 'tau2^-1*t1*tau3', (1, 108): 'tau1', (0, 190): 'tau3^-1', (0, 202): 'tau3', (0, 154): 'tau1', (0, 48): 't1^-1', (0, 166): 'tau2*t1^-1*tau3^-1', (0, 104): 't3', (0, 180): 't3*tau1^-1*t2^-1', (0, 163): 'tau2', (1, 199): 't2*tau1*t3^-1', (0, 177): 'tau2^-1', (0, 130): 't2', (0, 171): 'tau2^-1', (0, 197): 'tau3', (0, 164): 'tau2', (1, 186): 't2^-1*tau1^-1*t3', (0, 143): 't2^-1', (2, 130): 't2', (0, 157): 'tau2', (0, 183): 'tau3^-1', (0, 176): 'tau2^-1', (2, 143): 't2^-1', (0, 191): 'tau3^-1*t1^-1*tau2', (0, 158): 'tau2', (0, 203): 'tau3', (0, 170): 'tau2^-1', (0, 141): 'tau1^-1', (0, 35): 't1^-1', (0, 184): 'tau3^-1', (0, 155): 'tau1', (0, 196): 'tau3', (0, 49): 't1^-1', (0, 167): 't3^-1*tau1*t2', (2, 117): 't3^-1', (1, 121): 'tau1^-1', (0, 181): 't3*tau1^-1*t2^-1', (0, 142): 'tau1^-1', (0, 36): 't1^-1', (0, 189): 'tau3^-1', (0, 168): 't3^-1*tau1*t2', (0, 0): 't3', (0, 165): 'tau2*t1^-1*tau3^-1', (2, 104): 't3', }