U-tiling: UQC2766
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2149 |
*22222 |
(2,6,5) |
{4,5} |
{4.8.3.4}{3.8.4.4.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc5852
|
|
Fmmm |
69 |
orthorhombic |
{5,4} |
12 |
(2,6) |
G
|
False
|
|
sqc11385
|
|
Fddd |
70 |
orthorhombic |
{5,4,4} |
24 |
(3,7) |
D
|
False
|
|
sqc1075
|
|
Pmmm |
47 |
orthorhombic |
{4,5} |
6 |
(2,6) |
Topological data
Vertex degrees | {5,4} |
2D vertex symbol | {4.8.3.4}{3.8.4.4.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<21.1:208:118 106 107 6 7 60 61 23 24 38 39 144 132 133 19 20 73 74 51 52 170 158 159 32 33 86 87 49 50 196 184 185 45 46 99 100 131 145 146 58 59 75 76 90 91 105 119 120 71 72 103 104 183 197 198 84 85 101 102 157 171 172 97 98 110 111 151 152 140 141 168 169 123 124 138 139 153 154 181 182 136 137 194 195 149 150 207 208 162 163 203 204 192 193 175 176 190 191 205 206 188 189 201 202,2 4 31 8 13 10 12 15 17 44 21 26 23 25 28 30 34 39 36 38 41 43 47 52 49 51 54 56 83 60 65 62 64 67 69 96 73 78 75 77 80 82 86 91 88 90 93 95 99 104 101 103 106 108 161 112 117 114 116 119 121 174 125 130 127 129 132 134 187 138 143 140 142 145 147 200 151 156 153 155 158 160 164 169 166 168 171 173 177 182 179 181 184 186 190 195 192 194 197 199 203 208 205 207,27 3 5 7 9 11 13 40 16 18 20 22 24 26 29 31 33 35 37 39 42 44 46 48 50 52 79 55 57 59 61 63 65 92 68 70 72 74 76 78 81 83 85 87 89 91 94 96 98 100 102 104 157 107 109 111 113 115 117 170 120 122 124 126 128 130 183 133 135 137 139 141 143 196 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 8 3 4 4 4 8 3 4 8 4 4 8 3 4 3 3 4 4 3 4 3 3 4,5 4 5 4 4 4 5 4 5 4 4 4 5 4 5 4 5 4 5 4 4 4 4 4> {(0, 179): 't3*tau1^-1*t2^-1', (1, 108): 't3', (0, 190): 'tau3^-1*t1^-1*tau2', (0, 140): 'tau1^-1', (0, 34): 't1^-1', (0, 154): 't2^-1', (2, 182): 't2^-1', (0, 166): 't3^-1*tau1*t2', (0, 104): 't3', (0, 180): 't3', (0, 163): 'tau2*t1^-1*tau3^-1', (1, 199): 't2', (0, 130): 't2', (0, 171): 'tau2^-1', (0, 47): 't1^-1', (0, 152): 'tau1', (0, 197): 'tau3', (0, 164): 'tau2*t1^-1*tau3^-1', (0, 178): 't3*tau1^-1*t2^-1', (0, 143): 't2^-1', (0, 157): 'tau2', (0, 183): 'tau3^-1', (1, 134): 't2', (2, 143): 't2^-1', (0, 191): 't2^-1*tau1^-1*t3', (0, 158): 'tau2', (0, 170): 'tau2^-1', (0, 141): 't2', (0, 184): 'tau3^-1', (0, 46): 't1^-1', (0, 155): 't2^-1', (0, 196): 'tau3', (0, 167): 't3^-1', (2, 117): 't3^-1', (1, 121): 't3^-1', (0, 181): 't3', (0, 142): 't2', (0, 189): 'tau3^-1*t1^-1*tau2', (0, 168): 't3^-1', (0, 139): 'tau1^-1', (0, 33): 't1^-1', (0, 0): 't3', (0, 153): 'tau1', (2, 104): 't3', }