U-tiling: UQC2845
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2174 |
*22222 |
(2,6,5) |
{7,3} |
{4.4.4.6.4.4.4}{4.4.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc1000
|
|
Pmmm |
47 |
orthorhombic |
{3,7} |
6 |
(2,6) |
G
|
False
|
|
sqc11339
|
|
Fddd |
70 |
orthorhombic |
{7,3,3} |
24 |
(3,7) |
D
|
False
|
|
sqc5779
|
|
Cmma |
67 |
orthorhombic |
{3,7} |
12 |
(2,6) |
Topological data
Vertex degrees | {7,3} |
2D vertex symbol | {4.4.4.6.4.4.4}{4.4.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<23.3:208:53 15 16 30 31 8 9 36 37 129 130 66 43 44 21 22 49 50 155 156 79 41 42 34 35 181 182 92 47 48 207 208 67 68 82 83 60 61 88 89 142 143 95 96 73 74 101 102 116 117 93 94 86 87 194 195 99 100 168 169 144 132 133 160 161 112 113 166 167 131 145 146 173 174 125 126 179 180 186 187 138 139 192 193 199 200 151 152 205 206 196 184 185 164 165 183 197 198 177 178 190 191 203 204,2 4 6 111 10 13 12 15 17 19 137 23 26 25 28 30 32 163 36 39 38 41 43 45 189 49 52 51 54 56 58 150 62 65 64 67 69 71 124 75 78 77 80 82 84 202 88 91 90 93 95 97 176 101 104 103 106 108 110 114 117 116 119 121 123 127 130 129 132 134 136 140 143 142 145 147 149 153 156 155 158 160 162 166 169 168 171 173 175 179 182 181 184 186 188 192 195 194 197 199 201 205 208 207,105 3 5 7 9 11 13 131 16 18 20 22 24 26 157 29 31 33 35 37 39 183 42 44 46 48 50 52 144 55 57 59 61 63 65 118 68 70 72 74 76 78 196 81 83 85 87 89 91 170 94 96 98 100 102 104 107 109 111 113 115 117 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 159 161 163 165 167 169 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 4 6 4 4 6 4 4 6 6 4 4 4 4 4 4 4 4 4 4 4 4 4,7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 3 3 3 3 3 3 3 3> {(0, 179): 't3', (0, 146): 't2^-1', (0, 173): 't3', (0, 140): 't2', (0, 154): 't2^-1', (0, 166): 't3^-1', (1, 45): 'tau3', (1, 32): 'tau2^-1', (0, 39): 't1^-1', (0, 144): 'tau1', (2, 91): 'tau2', (0, 115): 't3', (0, 159): 't3^-1', (2, 78): 'tau3^-1', (0, 171): 't3*tau1^-1*t2^-1', (0, 185): 't2^-1', (0, 152): 't2^-1', (1, 84): 'tau3^-1', (0, 178): 't3', (0, 116): 't3', (2, 39): 'tau3', (0, 128): 't3^-1', (0, 172): 't3', (0, 186): 't2^-1', (0, 183): 't2^-1*tau1^-1*t3', (0, 195): 'tau3*t1*tau2^-1', (0, 12): 't3', (0, 26): 't1^-1', (0, 147): 't2^-1', (0, 191): 't2^-1', (0, 170): 't3*tau1^-1*t2^-1', (0, 141): 't2', (0, 184): 't2^-1*tau1^-1*t3', (0, 155): 't2^-1', (0, 119): 'tau1^-1', (0, 160): 't3^-1', (0, 131): 'tau1^-1', (0, 142): 't2', (1, 97): 'tau2', (2, 26): 'tau2^-1', (0, 182): 'tau3^-1*t1^-1*tau2', (0, 153): 't2^-1', (0, 165): 't3^-1', (0, 132): 'tau1^-1', }