h-net: hqc2174


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(2,6,5)
Vertex degrees{7,3}
2D vertex symbol {4.4.4.6.4.4.4}{4.4.6}
Delaney-Dress Symbol <2174.2:13:1 2 3 4 5 7 9 10 11 12 13,2 4 6 13 8 10 12,1 3 5 8 9 11 13:4 4 4 6 4,7 3>
Dual net hqc2243

Derived s-nets

s-nets with faithful topology

22 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc5778 Fmmm 69 orthorhombic {3,7} 12 (2,6)
Full image sqc11432 P4/mmm 123 tetragonal {7,3} 24 (2,6)
Full image sqc11289 I4122 98 tetragonal {7,3,3} 24 (3,7)
Full image sqc11292 I4122 98 tetragonal {7,3,3} 24 (3,7)
Full image sqc11334 I4122 98 tetragonal {7,3,3} 24 (3,7)
Full image sqc11335 I4122 98 tetragonal {7,3,3} 24 (3,7)
Full image sqc11339 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11340 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11349 I4122 98 tetragonal {7,3,3} 24 (3,7)
Full image sqc11431 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11433 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc11434 Fddd 70 orthorhombic {7,3,3} 24 (3,7)
Full image sqc1000 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc1014 Pmmm 47 orthorhombic {7,3} 6 (2,6)
Full image sqc1026 Pmmm 47 orthorhombic {3,7} 6 (2,6)
Full image sqc5660 P4222 93 tetragonal {3,7} 12 (2,6)
Full image sqc5677 P4222 93 tetragonal {3,7} 12 (2,6)
Full image sqc5768 P4222 93 tetragonal {3,7} 12 (2,6)
Full image sqc5779 Cmma 67 orthorhombic {3,7} 12 (2,6)
Full image sqc5788 Cmma 67 orthorhombic {3,7} 12 (2,6)
Full image sqc5926 P4222 93 tetragonal {3,7} 12 (2,6)
Full image sqc5930 P4222 93 tetragonal {7,3} 12 (2,6)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC2841 *22222a (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} No s‑net Snet sqc11292 Snet sqc5677
Tiling details UQC2842 *22222a (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc4873 Snet sqc11289 Snet sqc5660
Tiling details UQC2843 *22222a (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} No s‑net Snet sqc11334 Snet sqc5926
Tiling details UQC2844 *22222b (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc5778 Snet sqc11433 Snet sqc1000
Tiling details UQC2845 *22222b (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc1000 Snet sqc11339 Snet sqc5779
Tiling details UQC2846 *22222b (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} No s‑net Snet sqc11340 Snet sqc1014
Tiling details UQC2847 *22222b (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc5044 Snet sqc11431 Snet sqc1026
Tiling details UQC2848 *22222b (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc1000 Snet sqc11434 Snet sqc5788
Tiling details UQC2849 *22222a (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc11047 Snet sqc11349 Snet sqc5768
Tiling details UQC2850 *22222a (2,6,5) {7,3} {4.4.4.6.4.4.4}{4.4.6} Snet sqc11432 Snet sqc11335 Snet sqc5930

Symmetry-lowered hyperbolic tilings