U-tiling: UQC2847
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc2174 |
*22222 |
(2,6,5) |
{7,3} |
{4.4.4.6.4.4.4}{4.4.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc5044
|
|
Fmmm |
69 |
orthorhombic |
{6,3} |
12 |
(2,6) |
G
|
False
|
|
sqc11431
|
|
Fddd |
70 |
orthorhombic |
{7,3,3} |
24 |
(3,7) |
D
|
False
|
|
sqc1026
|
|
Pmmm |
47 |
orthorhombic |
{3,7} |
6 |
(2,6) |
Topological data
Vertex degrees | {7,3} |
2D vertex symbol | {4.4.4.6.4.4.4}{4.4.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<23.5:208:27 119 120 108 109 8 9 114 115 64 65 40 145 146 134 135 21 22 140 141 77 78 171 172 160 161 34 35 166 167 90 91 197 198 186 187 47 48 192 193 103 104 79 132 133 147 148 60 61 153 154 92 106 107 121 122 73 74 127 128 184 185 199 200 86 87 205 206 158 159 173 174 99 100 179 180 157 112 113 155 156 170 125 126 142 143 183 138 139 196 151 152 164 165 207 208 177 178 194 195 190 191 203 204,2 4 6 20 10 13 12 15 17 19 23 26 25 28 30 32 46 36 39 38 41 43 45 49 52 51 54 56 58 72 62 65 64 67 69 71 75 78 77 80 82 84 98 88 91 90 93 95 97 101 104 103 106 108 110 137 114 117 116 119 121 123 150 127 130 129 132 134 136 140 143 142 145 147 149 153 156 155 158 160 162 189 166 169 168 171 173 175 202 179 182 181 184 186 188 192 195 194 197 199 201 205 208 207,14 3 5 7 9 11 13 16 18 20 22 24 26 40 29 31 33 35 37 39 42 44 46 48 50 52 66 55 57 59 61 63 65 68 70 72 74 76 78 92 81 83 85 87 89 91 94 96 98 100 102 104 131 107 109 111 113 115 117 144 120 122 124 126 128 130 133 135 137 139 141 143 146 148 150 152 154 156 183 159 161 163 165 167 169 196 172 174 176 178 180 182 185 187 189 191 193 195 198 200 202 204 206 208:4 4 4 6 4 4 4 4 4 4 4 6 4 4 4 4 4 4 4 4 4 4 6 6,7 3 3 7 3 3 7 3 3 7 3 3 7 3 7 3 3 3 7 3 7 3 3 3> {(0, 179): 'tau2^-1', (0, 173): 'tau2^-1', (0, 67): 't3^-1', (1, 201): 't2*tau1*t3^-1', (1, 188): 't2^-1*tau1^-1*t3', (0, 199): 'tau3', (0, 166): 'tau2', (0, 180): 'tau2^-1*t1*tau3', (0, 192): 'tau3^-1', (0, 144): 't2^-1', (0, 159): 'tau2', (0, 185): 'tau3^-1', (2, 169): 't3*tau1^-1*t2^-1', (0, 178): 'tau2^-1', (0, 205): 'tau3', (0, 172): 'tau2^-1', (0, 143): 't2^-1', (0, 37): 't1^-1', (0, 186): 'tau3^-1', (0, 198): 'tau3', (0, 51): 't1^-1', (0, 169): 't3', (1, 123): 'tau1^-1', (0, 1): 't3', (2, 156): 't3^-1*tau1*t2', (0, 38): 't1^-1', (0, 191): 'tau3^-1', (0, 2): 't3', (0, 167): 'tau2*t1^-1*tau3^-1', (2, 117): 'tau1^-1', (0, 105): 't3', (0, 181): 'tau2^-1*t1*tau3', (1, 110): 'tau1', (0, 160): 'tau2', (0, 131): 't2', (0, 204): 'tau3', (0, 145): 't2^-1', (0, 156): 't3^-1', (0, 50): 't1^-1', (0, 168): 'tau2*t1^-1*tau3^-1', (0, 182): 't2^-1', (0, 165): 'tau2', (2, 104): 'tau1', (0, 132): 't2', }