U-tiling: UQC3539
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc750 |
*22222 |
(3,5,2) |
{4,4,4} |
{4.4.4.4}{4.8.8.4}{8.8.8.8} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc154
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4} |
4 |
(3,5) |
G
|
False
|
|
sqc7738
|
|
Fddd |
70 |
orthorhombic |
{4,4,4} |
16 |
(3,5) |
D
|
False
|
|
sqc2108
|
|
Cmma |
67 |
orthorhombic |
{4,4,4} |
8 |
(3,5) |
Topological data
Vertex degrees | {4,4,4} |
2D vertex symbol | {4.4.4.4}{4.8.8.4}{8.8.8.8} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<21.2:128:73 3 76 77 7 24 89 11 92 93 15 32 105 19 108 109 23 121 27 124 125 31 81 35 84 85 39 56 65 43 68 69 47 64 113 51 116 117 55 97 59 100 101 63 67 71 104 75 79 112 83 87 120 91 95 128 99 103 107 111 115 119 123 127,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128,65 34 35 5 38 39 16 81 42 43 13 46 47 97 50 51 21 54 55 32 113 58 59 29 62 63 89 37 48 73 45 121 53 64 105 61 90 91 69 94 95 88 82 83 77 86 87 96 85 93 122 123 101 126 127 120 114 115 109 118 119 128 117 125:4 8 4 8 4 4 4 8 4 8 4 4,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 61): 't1', (2, 62): 't1', (2, 56): 'tau2', (2, 57): 't1', (2, 58): 't1', (2, 53): 't1', (2, 54): 't1', (2, 48): 'tau3^-1', (2, 49): 't1', (2, 50): 't1', (0, 43): 't3^-1', (0, 40): 't3^-1', (0, 44): 't3^-1', (0, 35): 't2^-1', (0, 32): 't2^-1', (0, 36): 't2^-1', (2, 121): 'tau3*t1*tau2^-1', (2, 24): 'tau3', (2, 16): 'tau2^-1', (0, 11): 't2', (0, 8): 't2', (0, 12): 't2', (0, 3): 't3', (0, 0): 't3', (0, 4): 't3', (2, 125): 'tau3*t1*tau2^-1', (2, 126): 'tau3*t1*tau2^-1', (2, 127): 't2*tau1*t3^-1', (0, 127): 't2', (2, 122): 'tau3*t1*tau2^-1', (2, 117): 'tau3^-1*t1^-1*tau2', (2, 118): 'tau3^-1*t1^-1*tau2', (2, 119): 't2^-1*tau1^-1*t3', (2, 113): 'tau3^-1*t1^-1*tau2', (2, 114): 'tau3^-1*t1^-1*tau2', (0, 119): 't2^-1', (0, 103): 't3^-1', (2, 95): 'tau1', (2, 87): 'tau1^-1', (0, 79): 't3^-1'}