h-net: hqc750


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,4,4}
2D vertex symbol {4.4.4.4}{4.8.8.4}{8.8.8.8}
Delaney-Dress Symbol <750.2:8:1 3 4 5 7 8,2 4 6 8,1 2 3 5 6 7 8:4 8,4 4 4>
Dual net hqc603

Derived s-nets

s-nets with faithful topology

24 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc2060 Fmmm 69 orthorhombic {4,4,4} 8 (3,5)
Full image sqc8097 Cmma 67 orthorhombic {4,4,4,4,4,4} 16 (6,8)
Full image sqc8103 P4/mmm 123 tetragonal {4,4,4} 16 (3,5)
Full image sqc7723 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7734 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7738 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7739 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7748 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc7749 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7755 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7757 Fddd 70 orthorhombic {4,4,4} 16 (3,5)
Full image sqc7781 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc8043 C2/c 15 monoclinic {4,4,4,4,4,4} 16 (6,9)
Full image sqc8108 I4122 98 tetragonal {4,4,4} 16 (3,5)
Full image sqc154 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
Full image sqc159 Pmmm 47 orthorhombic {4,4,4} 4 (3,5)
Full image sqc1751 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1763 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc1767 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc2059 Cmma 67 orthorhombic {4,4,4} 8 (3,5)
Full image sqc2099 P42/mmc 131 tetragonal {4,4,4} 8 (3,5)
Full image sqc2108 Cmma 67 orthorhombic {4,4,4} 8 (3,5)
Full image sqc2118 P4222 93 tetragonal {4,4,4} 8 (3,5)
Full image sqc8044 Imma 74 orthorhombic {4,4,4,4,4,4} 16 (6,8)

s-nets with edge collapse


Derived U-tilings

11 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3535 *22222a (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc7037 Snet sqc7734 Snet sqc1751
Tiling details UQC3536 *22222a (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc5709 Snet sqc7748 Snet sqc1763
Tiling details UQC3537 *22222a (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc6093 Snet sqc7723 Snet sqc2099
Tiling details UQC3538 *22222b (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc1543 Snet sqc7757 Snet sqc154
Tiling details UQC3539 *22222b (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc154 Snet sqc7738 Snet sqc2108
Tiling details UQC3540 *22222b (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc154 Snet sqc7755 Snet sqc2059
Tiling details UQC3541 *22222b (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc2060 Snet sqc7739 Snet sqc154
Tiling details UQC3542 *22222b (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc1114 Snet sqc7749 Snet sqc159
Tiling details UQC3543 *22222a (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc8103 Snet sqc8108 Snet sqc2118
Tiling details UQC3544 *22222a (3,5,2) {4,4,4} {4.4.4.4}{4.8.8.4}{8.8.8.8} Snet sqc7368 Snet sqc7781 Snet sqc1767
Tiling details UQC6016 *222222a (6,8,2) {4,4,4,4,4,4} {8.8.8.8}{8.4.4.8}{8.8.4.4}{4.4.... Snet sqc8097 Snet sqc8043 Snet sqc8044

Symmetry-lowered hyperbolic tilings