U-tiling: UQC3719
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc818 |
*22222 |
(3,4,2) |
{8,4,4} |
{3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc1521
|
|
Fmmm |
69 |
orthorhombic |
{4,4,7} |
6 |
(3,4) |
G
|
False
|
|
sqc7822
|
|
Fddd |
70 |
orthorhombic |
{8,4,4} |
12 |
(3,5) |
D
|
False
|
|
sqc116
|
|
Pmmm |
47 |
orthorhombic |
{8,4,4} |
3 |
(3,4) |
Topological data
Vertex degrees | {8,4,4} |
2D vertex symbol | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<30.5:128:9 3 5 7 40 11 13 15 48 25 19 21 23 56 27 29 31 64 41 35 37 39 43 45 47 57 51 53 55 59 61 63 81 67 69 71 96 89 75 77 79 88 83 85 87 91 93 95 113 99 101 103 128 121 107 109 111 120 115 117 119 123 125 127,2 11 6 37 8 10 14 45 16 18 27 22 53 24 26 30 61 32 34 43 38 40 42 46 48 50 59 54 56 58 62 64 66 83 70 93 72 74 91 78 85 80 82 86 88 90 94 96 98 115 102 125 104 106 123 110 117 112 114 118 120 122 126 128,17 4 5 78 79 72 25 12 13 94 95 88 20 21 110 111 104 28 29 126 127 120 49 36 37 86 87 96 57 44 45 70 71 80 52 53 118 119 128 60 61 102 103 112 97 68 69 105 76 77 113 84 85 121 92 93 100 101 108 109 116 117 124 125:3 5 5 3 5 5 3 3 3 5 3 5 3 5 3 5,8 4 4 8 4 4 4 4 8 8 4 4> {(2, 63): 'tau2', (1, 124): 'tau3*t1*tau2^-1', (2, 55): 'tau3^-1', (1, 116): 'tau3^-1*t1^-1*tau2', (2, 45): 't3^-1', (2, 46): 't3^-1', (1, 106): 't3*tau1^-1*t2^-1', (2, 37): 't2^-1', (2, 38): 't2^-1', (1, 82): 'tau1^-1', (0, 63): 't1', (1, 90): 'tau1', (2, 23): 'tau2^-1', (0, 23): 't1^-1', (2, 13): 't2', (2, 14): 't2', (2, 5): 't3', (2, 6): 't3', (0, 120): 't2*tau1*t3^-1', (1, 114): 't2^-1*tau1^-1*t3', (2, 120): 't2', (0, 127): 'tau3*t1*tau2^-1', (0, 112): 't2^-1*tau1^-1*t3', (2, 112): 't2^-1', (1, 52): 't1', (0, 119): 'tau3^-1*t1^-1*tau2', (2, 31): 'tau3', (2, 104): 't3', (2, 96): 't3^-1', (1, 60): 't1', (0, 72): 'tau1^-1', (0, 64): 'tau1'}