h-net: hqc818


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,4,2)
Vertex degrees{8,4,4}
2D vertex symbol {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5}
Delaney-Dress Symbol <818.2:8:1 3 5 7 8,2 3 6 5 8,1 4 5 6 7 8:3 5,8 4 4>
Dual net hqc674

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc116 Pmmm 47 orthorhombic {8,4,4} 3 (3,4)
Full image sqc1961 Fmmm 69 orthorhombic {4,4,8} 6 (3,4)
Full image sqc7429 I4122 98 tetragonal {8,4,4} 12 (3,5)
Full image sqc7599 I4122 98 tetragonal {8,4,4} 12 (3,5)
Full image sqc7633 I4122 98 tetragonal {8,4,4} 12 (3,5)
Full image sqc7704 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7707 I4122 98 tetragonal {8,4,4} 12 (3,5)
Full image sqc7730 I4122 98 tetragonal {8,4,4} 12 (3,5)
Full image sqc7763 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7764 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7822 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc7823 Fddd 70 orthorhombic {8,4,4} 12 (3,5)
Full image sqc1654 P4222 93 tetragonal {4,4,8} 6 (3,4)
Full image sqc1658 P42/mmc 131 tetragonal {4,4,8} 6 (3,4)
Full image sqc1856 P4222 93 tetragonal {8,4,4} 6 (3,4)
Full image sqc1857 P4222 93 tetragonal {4,4,8} 6 (3,4)
Full image sqc1859 Cmma 67 orthorhombic {4,4,8} 6 (3,4)
Full image sqc1962 Cmma 67 orthorhombic {8,4,4} 6 (3,4)
Full image sqc2102 P4222 93 tetragonal {4,8,4} 6 (3,4)
Full image sqc2106 Cmma 67 orthorhombic {4,4,8} 6 (3,4)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3712 *22222a (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} No s‑net Snet sqc7599 Snet sqc1654
Tiling details UQC3713 *22222a (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc7024 Snet sqc7429 Snet sqc2102
Tiling details UQC3714 *22222a (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc7201 Snet sqc7707 Snet sqc1856
Tiling details UQC3715 *22222a (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc7269 Snet sqc7633 Snet sqc1658
Tiling details UQC3716 *22222a (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} No s‑net Snet sqc7730 Snet sqc1857
Tiling details UQC3717 *22222b (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc116 Snet sqc7823 Snet sqc1962
Tiling details UQC3718 *22222b (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc1961 Snet sqc7763 Snet sqc116
Tiling details UQC3719 *22222b (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc1521 Snet sqc7822 Snet sqc116
Tiling details UQC3720 *22222b (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} No s‑net Snet sqc7704 Snet sqc2106
Tiling details UQC3721 *22222b (3,4,2) {8,4,4} {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} Snet sqc1552 Snet sqc7764 Snet sqc1859

Symmetry-lowered hyperbolic tilings