| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,4,2) |
| Vertex degrees | {8,4,4} |
| 2D vertex symbol | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
| Delaney-Dress Symbol | <818.2:8:1 3 5 7 8,2 3 6 5 8,1 4 5 6 7 8:3 5,8 4 4> |
| Dual net | hqc674 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc116 | Pmmm | 47 | orthorhombic | {8,4,4} | 3 | (3,4) | |
|
sqc1961 | Fmmm | 69 | orthorhombic | {4,4,8} | 6 | (3,4) | |
|
sqc7429 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | |
|
sqc7599 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | |
|
sqc7633 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | |
|
sqc7704 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | |
|
sqc7707 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | |
|
sqc7730 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | |
|
sqc7763 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | |
|
sqc7764 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | |
|
sqc7822 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | |
|
sqc7823 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | |
|
sqc1654 | P4222 | 93 | tetragonal | {4,4,8} | 6 | (3,4) | |
|
sqc1658 | P42/mmc | 131 | tetragonal | {4,4,8} | 6 | (3,4) | |
|
sqc1856 | P4222 | 93 | tetragonal | {8,4,4} | 6 | (3,4) | |
|
sqc1857 | P4222 | 93 | tetragonal | {4,4,8} | 6 | (3,4) | |
|
sqc1859 | Cmma | 67 | orthorhombic | {4,4,8} | 6 | (3,4) | |
|
sqc1962 | Cmma | 67 | orthorhombic | {8,4,4} | 6 | (3,4) | |
|
sqc2102 | P4222 | 93 | tetragonal | {4,8,4} | 6 | (3,4) | |
|
sqc2106 | Cmma | 67 | orthorhombic | {4,4,8} | 6 | (3,4) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3712 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net |
sqc7599
|
sqc1654
|
![]() |
UQC3713 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc7024
|
sqc7429
|
sqc2102
|
![]() |
UQC3714 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc7201
|
sqc7707
|
sqc1856
|
![]() |
UQC3715 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc7269
|
sqc7633
|
sqc1658
|
![]() |
UQC3716 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net |
sqc7730
|
sqc1857
|
![]() |
UQC3717 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc116
|
sqc7823
|
sqc1962
|
![]() |
UQC3718 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc1961
|
sqc7763
|
sqc116
|
![]() |
UQC3719 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc1521
|
sqc7822
|
sqc116
|
![]() |
UQC3720 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net |
sqc7704
|
sqc2106
|
![]() |
UQC3721 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
sqc1552
|
sqc7764
|
sqc1859
|