Orbifold symbol | *22222 |
Transitivity (vertex, edge, ring) | (3,4,2) |
Vertex degrees | {8,4,4} |
2D vertex symbol | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} |
Delaney-Dress Symbol | <818.2:8:1 3 5 7 8,2 3 6 5 8,1 4 5 6 7 8:3 5,8 4 4> |
Dual net | hqc674 |
Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
---|---|---|---|---|---|---|---|---|
sqc116 | Pmmm | 47 | orthorhombic | {8,4,4} | 3 | (3,4) | ||
sqc1961 | Fmmm | 69 | orthorhombic | {4,4,8} | 6 | (3,4) | ||
sqc7429 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | ||
sqc7599 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | ||
sqc7633 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | ||
sqc7704 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | ||
sqc7707 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | ||
sqc7730 | I4122 | 98 | tetragonal | {8,4,4} | 12 | (3,5) | ||
sqc7763 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | ||
sqc7764 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | ||
sqc7822 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | ||
sqc7823 | Fddd | 70 | orthorhombic | {8,4,4} | 12 | (3,5) | ||
sqc1654 | P4222 | 93 | tetragonal | {4,4,8} | 6 | (3,4) | ||
sqc1658 | P42/mmc | 131 | tetragonal | {4,4,8} | 6 | (3,4) | ||
sqc1856 | P4222 | 93 | tetragonal | {8,4,4} | 6 | (3,4) | ||
sqc1857 | P4222 | 93 | tetragonal | {4,4,8} | 6 | (3,4) | ||
sqc1859 | Cmma | 67 | orthorhombic | {4,4,8} | 6 | (3,4) | ||
sqc1962 | Cmma | 67 | orthorhombic | {8,4,4} | 6 | (3,4) | ||
sqc2102 | P4222 | 93 | tetragonal | {4,8,4} | 6 | (3,4) | ||
sqc2106 | Cmma | 67 | orthorhombic | {4,4,8} | 6 | (3,4) |
Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
---|---|---|---|---|---|---|---|---|
UQC3712 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net | sqc7599 | sqc1654 | |
UQC3713 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc7024 | sqc7429 | sqc2102 | |
UQC3714 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc7201 | sqc7707 | sqc1856 | |
UQC3715 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc7269 | sqc7633 | sqc1658 | |
UQC3716 | *22222a | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net | sqc7730 | sqc1857 | |
UQC3717 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc116 | sqc7823 | sqc1962 | |
UQC3718 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc1961 | sqc7763 | sqc116 | |
UQC3719 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc1521 | sqc7822 | sqc116 | |
UQC3720 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | No s‑net | sqc7704 | sqc2106 | |
UQC3721 | *22222b | (3,4,2) | {8,4,4} | {3.5.5.3.3.5.5.3}{3.5.3.5}{5.5.5.5} | sqc1552 | sqc7764 | sqc1859 |