U-tiling: UQC3924
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1112 |
*22222 |
(3,5,2) |
{3,8,4} |
{6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2833
|
|
Fmmm |
69 |
orthorhombic |
{3,8,4} |
8 |
(3,5) |
G
|
False
|
|
sqc8783
|
|
Fddd |
70 |
orthorhombic |
{3,8,4} |
16 |
(3,6) |
D
|
False
|
|
sqc240
|
|
Pmmm |
47 |
orthorhombic |
{3,8,4} |
4 |
(3,5) |
Topological data
Vertex degrees | {3,8,4} |
2D vertex symbol | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<40.3:144:73 3 5 42 8 81 91 12 14 51 17 99 109 21 23 60 26 117 127 30 32 69 35 135 100 39 41 44 108 82 48 50 53 90 136 57 59 62 144 118 66 68 71 126 75 77 105 80 84 86 96 89 93 95 98 102 104 107 111 113 141 116 120 122 132 125 129 131 134 138 140 143,2 7 40 6 9 11 16 49 15 18 20 25 58 24 27 29 34 67 33 36 38 43 42 45 47 52 51 54 56 61 60 63 65 70 69 72 74 79 103 78 81 83 88 94 87 90 92 97 96 99 101 106 105 108 110 115 139 114 117 119 124 130 123 126 128 133 132 135 137 142 141 144,37 4 5 15 25 26 90 46 13 14 34 35 108 55 22 23 33 126 64 31 32 144 40 41 51 61 62 99 49 50 70 71 81 58 59 69 135 67 68 117 100 76 77 96 115 116 91 85 86 105 124 125 94 95 133 134 103 104 142 143 136 112 113 132 127 121 122 141 130 131 139 140:6 3 6 3 6 3 6 3 6 6 6 6 3 3 3 3,3 8 4 3 4 3 3 8 4 4 3 8 3 8 3 3> {(1, 120): 'tau2^-1*t1*tau3', (2, 63): 't1', (0, 62): 'tau3^-1', (0, 63): 'tau2', (0, 59): 't1', (2, 53): 't3^-1', (2, 54): 't1', (0, 54): 'tau3^-1', (2, 44): 't2^-1', (1, 111): 'tau2*t1^-1*tau3^-1', (0, 35): 'tau3', (0, 32): 't1^-1', (2, 124): 't3', (0, 26): 'tau2^-1', (0, 27): 'tau3', (0, 18): 'tau2^-1', (2, 123): 't3', (2, 17): 't2', (2, 140): 't2*tau1*t3^-1', (2, 141): 't2', (2, 142): 't2', (2, 8): 't3', (0, 140): 'tau3*t1*tau2^-1', (2, 132): 't2^-1', (0, 131): 'tau3^-1*t1^-1*tau2', (2, 135): 'tau3*t1*tau2^-1', (2, 131): 't2^-1*tau1^-1*t3', (1, 57): 't1', (2, 126): 'tau3^-1*t1^-1*tau2', (0, 125): 'tau2^-1', (2, 114): 't3^-1', (2, 104): 'tau1', (2, 133): 't2^-1', (2, 95): 'tau1^-1', (1, 66): 't1', (2, 79): 't3'}