h-net: hqc1112


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{3,8,4}
2D vertex symbol {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6}
Delaney-Dress Symbol <1112.2:9:1 3 5 6 8 9,2 7 4 6 9,1 4 5 6 7 8 9:6 3,3 8 4>
Dual net hqc1055

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc240 Pmmm 47 orthorhombic {3,8,4} 4 (3,5)
Full image sqc2833 Fmmm 69 orthorhombic {3,8,4} 8 (3,5)
Full image sqc8419 I4122 98 tetragonal {3,8,4} 16 (3,6)
Full image sqc8645 I4122 98 tetragonal {3,8,4} 16 (3,6)
Full image sqc8754 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8757 I4122 98 tetragonal {3,8,4} 16 (3,6)
Full image sqc8772 I4122 98 tetragonal {3,8,4} 16 (3,6)
Full image sqc8780 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8783 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8859 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8860 Fddd 70 orthorhombic {3,8,4} 16 (3,6)
Full image sqc8861 I4122 98 tetragonal {3,8,4} 16 (3,6)
Full image sqc2375 P42/mmc 131 tetragonal {8,3,4} 8 (3,5)
Full image sqc2378 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc2493 P4222 93 tetragonal {8,4,3} 8 (3,5)
Full image sqc2897 Cmma 67 orthorhombic {3,8,4} 8 (3,5)
Full image sqc2912 Cmma 67 orthorhombic {8,4,3} 8 (3,5)
Full image sqc2953 P4222 93 tetragonal {3,4,8} 8 (3,5)
Full image sqc2954 P4222 93 tetragonal {4,8,3} 8 (3,5)
Full image sqc2988 Cmma 67 orthorhombic {3,4,8} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC3921 *22222a (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} No s‑net Snet sqc8861 Snet sqc2378
Tiling details UQC3922 *22222a (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} No s‑net Snet sqc8772 Snet sqc2954
Tiling details UQC3923 *22222b (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc240 Snet sqc8860 Snet sqc2912
Tiling details UQC3924 *22222b (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc2833 Snet sqc8783 Snet sqc240
Tiling details UQC3925 *22222b (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc2277 Snet sqc8859 Snet sqc240
Tiling details UQC3926 *22222b (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} No s‑net Snet sqc8754 Snet sqc2897
Tiling details UQC3927 *22222a (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc8346 Snet sqc8645 Snet sqc2375
Tiling details UQC3928 *22222b (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc2276 Snet sqc8780 Snet sqc2988
Tiling details UQC3929 *22222a (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc8269 Snet sqc8419 Snet sqc2493
Tiling details UQC3930 *22222a (3,5,2) {3,8,4} {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} Snet sqc8336 Snet sqc8757 Snet sqc2953

Symmetry-lowered hyperbolic tilings