| Orbifold symbol | *22222 |
| Transitivity (vertex, edge, ring) | (3,5,2) |
| Vertex degrees | {3,8,4} |
| 2D vertex symbol | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
| Delaney-Dress Symbol | <1112.2:9:1 3 5 6 8 9,2 7 4 6 9,1 4 5 6 7 8 9:6 3,3 8 4> |
| Dual net | hqc1055 |
| Image | s-net name | Other names | Space group | Space group number | Symmetry class | Vertex degree(s) | Vertices per primitive unit cell | Transitivity (Vertex, Edge) |
|---|---|---|---|---|---|---|---|---|
|
sqc240 | Pmmm | 47 | orthorhombic | {3,8,4} | 4 | (3,5) | |
|
sqc2833 | Fmmm | 69 | orthorhombic | {3,8,4} | 8 | (3,5) | |
|
sqc8419 | I4122 | 98 | tetragonal | {3,8,4} | 16 | (3,6) | |
|
sqc8645 | I4122 | 98 | tetragonal | {3,8,4} | 16 | (3,6) | |
|
sqc8754 | Fddd | 70 | orthorhombic | {3,8,4} | 16 | (3,6) | |
|
sqc8757 | I4122 | 98 | tetragonal | {3,8,4} | 16 | (3,6) | |
|
sqc8772 | I4122 | 98 | tetragonal | {3,8,4} | 16 | (3,6) | |
|
sqc8780 | Fddd | 70 | orthorhombic | {3,8,4} | 16 | (3,6) | |
|
sqc8783 | Fddd | 70 | orthorhombic | {3,8,4} | 16 | (3,6) | |
|
sqc8859 | Fddd | 70 | orthorhombic | {3,8,4} | 16 | (3,6) | |
|
sqc8860 | Fddd | 70 | orthorhombic | {3,8,4} | 16 | (3,6) | |
|
sqc8861 | I4122 | 98 | tetragonal | {3,8,4} | 16 | (3,6) | |
|
sqc2375 | P42/mmc | 131 | tetragonal | {8,3,4} | 8 | (3,5) | |
|
sqc2378 | P4222 | 93 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2493 | P4222 | 93 | tetragonal | {8,4,3} | 8 | (3,5) | |
|
sqc2897 | Cmma | 67 | orthorhombic | {3,8,4} | 8 | (3,5) | |
|
sqc2912 | Cmma | 67 | orthorhombic | {8,4,3} | 8 | (3,5) | |
|
sqc2953 | P4222 | 93 | tetragonal | {3,4,8} | 8 | (3,5) | |
|
sqc2954 | P4222 | 93 | tetragonal | {4,8,3} | 8 | (3,5) | |
|
sqc2988 | Cmma | 67 | orthorhombic | {3,4,8} | 8 | (3,5) |
| Image | U-tiling name | PGD Subgroup | Transitivity (Vert,Edge,Face) | Vertex Degree | Vertex Symbol | P net | G net | D net |
|---|---|---|---|---|---|---|---|---|
![]() |
UQC3921 | *22222a | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} | No s‑net |
sqc8861
|
sqc2378
|
![]() |
UQC3922 | *22222a | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} | No s‑net |
sqc8772
|
sqc2954
|
![]() |
UQC3923 | *22222b | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc240
|
sqc8860
|
sqc2912
|
![]() |
UQC3924 | *22222b | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc2833
|
sqc8783
|
sqc240
|
![]() |
UQC3925 | *22222b | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc2277
|
sqc8859
|
sqc240
|
![]() |
UQC3926 | *22222b | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} | No s‑net |
sqc8754
|
sqc2897
|
![]() |
UQC3927 | *22222a | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc8346
|
sqc8645
|
sqc2375
|
![]() |
UQC3928 | *22222b | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc2276
|
sqc8780
|
sqc2988
|
![]() |
UQC3929 | *22222a | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc8269
|
sqc8419
|
sqc2493
|
![]() |
UQC3930 | *22222a | (3,5,2) | {3,8,4} | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
sqc8336
|
sqc8757
|
sqc2953
|