U-tiling: UQC3925
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
 |
hqc1112 |
*22222 |
(3,5,2) |
{3,8,4} |
{6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
True
|
|
sqc2277
|
|
Fmmm |
69 |
orthorhombic |
{3,7,4} |
8 |
(3,5) |
G
|
False
|
|
sqc8859
|
|
Fddd |
70 |
orthorhombic |
{3,8,4} |
16 |
(3,6) |
D
|
False
|
|
sqc240
|
|
Pmmm |
47 |
orthorhombic |
{3,8,4} |
4 |
(3,5) |
Topological data
Vertex degrees | {3,8,4} |
2D vertex symbol | {6.3.6}{6.6.3.3.6.6.3.3}{6.6.6.6} |
Dual tiling |  |
D-symbol
Genus-3 version with t-tau cuts labelled
<40.4:144:37 3 5 15 8 45 46 12 14 17 54 55 21 23 33 26 63 64 30 32 35 72 39 41 51 44 48 50 53 57 59 69 62 66 68 71 100 75 77 96 80 108 91 84 86 105 89 99 93 95 98 102 104 107 136 111 113 132 116 144 127 120 122 141 125 135 129 131 134 138 140 143,2 7 13 6 9 11 16 15 18 20 25 31 24 27 29 34 33 36 38 43 49 42 45 47 52 51 54 56 61 67 60 63 65 70 69 72 74 79 94 78 81 83 88 103 87 90 92 97 96 99 101 106 105 108 110 115 130 114 117 119 124 139 123 126 128 133 132 135 137 142 141 144,10 4 5 24 88 89 81 13 14 33 106 107 99 28 22 23 124 125 117 31 32 142 143 135 46 40 41 60 97 98 108 49 50 69 79 80 90 64 58 59 133 134 144 67 68 115 116 126 91 76 77 114 100 85 86 123 94 95 132 103 104 141 127 112 113 136 121 122 130 131 139 140:6 3 6 6 3 6 3 3 6 3 6 3 6 3 6 3,3 8 4 8 4 3 4 4 3 8 8 3 3 3 3 3> {(1, 120): 't3*tau1^-1*t2^-1', (2, 62): 'tau3^-1', (0, 62): 't1', (0, 63): 't1', (2, 52): 't3^-1', (2, 51): 't3^-1', (2, 42): 't2^-1', (2, 43): 't2^-1', (0, 35): 't1^-1', (1, 111): 't3^-1*tau1*t2', (2, 35): 'tau3', (1, 93): 'tau1^-1', (2, 26): 'tau2^-1', (0, 18): 't1^-1', (2, 16): 't2', (1, 84): 'tau1^-1', (2, 140): 't2', (2, 15): 't2', (0, 143): 'tau3*t1*tau2^-1', (0, 140): 't2*tau1*t3^-1', (0, 131): 't2^-1*tau1^-1*t3', (2, 6): 't3', (2, 135): 't2*tau1*t3^-1', (0, 134): 'tau3^-1*t1^-1*tau2', (2, 131): 't2^-1', (2, 125): 'tau2^-1', (2, 126): 't2^-1*tau1^-1*t3', (0, 126): 'tau3^-1*t1^-1*tau2', (2, 122): 't3', (2, 113): 't3^-1', (0, 104): 'tau1', (0, 108): 'tau2*t1^-1*tau3^-1', (2, 99): 'tau1', (2, 7): 't3', (0, 95): 'tau1^-1', (2, 90): 'tau1^-1'}