U-tiling: UQC4158
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1513 |
*22222 |
(3,5,2) |
{4,8,4} |
{8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc420
|
|
Pmmm |
47 |
orthorhombic |
{4,4,8} |
4 |
(3,5) |
G
|
False
|
|
sqc9506
|
|
Fddd |
70 |
orthorhombic |
{4,8,4} |
16 |
(3,6) |
D
|
False
|
|
sqc3719
|
|
Cmma |
67 |
orthorhombic |
{4,8,4} |
8 |
(3,5) |
Topological data
Vertex degrees | {4,8,4} |
2D vertex symbol | {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<3.1:160:21 3 5 7 9 20 31 13 15 17 19 23 25 27 29 40 33 35 37 39 61 43 45 47 49 60 71 53 55 57 59 63 65 67 69 80 73 75 77 79 121 83 85 87 89 110 131 93 95 97 99 120 141 103 105 107 109 151 113 115 117 119 123 125 127 129 150 133 135 137 139 160 143 145 147 149 153 155 157 159,2 10 6 9 8 12 20 16 19 18 22 30 26 29 28 32 40 36 39 38 42 50 46 49 48 52 60 56 59 58 62 70 66 69 68 72 80 76 79 78 82 90 86 89 88 92 100 96 99 98 102 110 106 109 108 112 120 116 119 118 122 130 126 129 128 132 140 136 139 138 142 150 146 149 148 152 160 156 159 158,91 4 5 96 97 88 89 50 111 14 15 116 117 108 109 60 131 24 25 136 137 128 129 70 151 34 35 156 157 148 149 80 101 44 45 106 107 118 119 81 54 55 86 87 98 99 141 64 65 146 147 158 159 121 74 75 126 127 138 139 84 85 120 94 95 110 104 105 114 115 124 125 160 134 135 150 144 145 154 155:8 3 3 3 3 8 3 3 3 3 8 3 8 3 3 3 3 3 3 3,4 8 4 4 8 4 4 8 4 4 8 4 4 4 4 4> {(2, 56): 't3^-1', (0, 150): 't2', (2, 55): 't3^-1', (2, 50): 't3^-1', (2, 45): 't2^-1', (2, 46): 't2^-1', (2, 40): 't2^-1', (2, 37): 'tau3', (2, 38): 'tau3', (2, 39): 't1^-1', (2, 28): 'tau2^-1', (2, 29): 't1^-1', (2, 158): 'tau3', (0, 159): 't2*tau1*t3^-1', (2, 27): 'tau2^-1', (2, 149): 'tau3^-1*t1^-1*tau2', (2, 16): 't2', (2, 15): 't2', (2, 137): 'tau2^-1', (2, 10): 't2', (0, 130): 't3', (2, 5): 't3', (2, 6): 't3', (0, 129): 't3^-1*tau1*t2', (2, 0): 't3', (2, 129): 'tau2*t1^-1*tau3^-1', (0, 120): 't3^-1', (0, 140): 't2^-1', (2, 157): 'tau3', (0, 119): 'tau1', (0, 89): 'tau1', (2, 138): 'tau2^-1'}