h-net: hqc1513


Topological data

Orbifold symbol*22222
Transitivity (vertex, edge, ring)(3,5,2)
Vertex degrees{4,8,4}
2D vertex symbol {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3}
Delaney-Dress Symbol <1513.2:10:1 3 5 7 9 10,2 10 6 9 8,1 4 5 6 7 8 9 10:8 3,4 8 4>
Dual net hqc1424

Derived s-nets

s-nets with faithful topology

21 records listed.
Image s-net name Other names Space group Space group number Symmetry class Vertex degree(s) Vertices per primitive unit cell Transitivity (Vertex, Edge)
Full image sqc420 Pmmm 47 orthorhombic {4,4,8} 4 (3,5)
Full image sqc3561 Fmmm 69 orthorhombic {8,4,4} 8 (3,5)
Full image sqc9477 P4/mmm 123 tetragonal {4,8,4} 16 (3,5)
Full image sqc9378 I4122 98 tetragonal {4,8,4} 16 (3,6)
Full image sqc9476 I4122 98 tetragonal {4,8,4} 16 (3,6)
Full image sqc9506 Fddd 70 orthorhombic {4,8,4} 16 (3,6)
Full image sqc9507 I4122 98 tetragonal {4,8,4} 16 (3,6)
Full image sqc9510 I4122 98 tetragonal {4,8,4} 16 (3,6)
Full image sqc9511 Fddd 70 orthorhombic {4,8,4} 16 (3,6)
Full image sqc9512 Fddd 70 orthorhombic {4,8,4} 16 (3,6)
Full image sqc9711 Fddd 70 orthorhombic {4,8,4} 16 (3,6)
Full image sqc9714 Fddd 70 orthorhombic {4,8,4} 16 (3,6)
Full image sqc9736 I4122 98 tetragonal {4,8,4} 16 (3,6)
Full image sqc3169 P42/mmc 131 tetragonal {8,4,4} 8 (3,5)
Full image sqc3226 P4222 93 tetragonal {4,8,4} 8 (3,5)
Full image sqc3227 P4222 93 tetragonal {4,4,8} 8 (3,5)
Full image sqc3522 P42/mmc 131 tetragonal {4,4,8} 8 (3,5)
Full image sqc3596 P42/mcm 132 tetragonal {4,8,4} 8 (3,5)
Full image sqc3719 Cmma 67 orthorhombic {4,8,4} 8 (3,5)
Full image sqc3774 Cmma 67 orthorhombic {4,8,4} 8 (3,5)

s-nets with edge collapse


Derived U-tilings

10 records listed.
Image U-tiling name PGD Subgroup Transitivity (Vert,Edge,Face) Vertex Degree Vertex Symbol P net G net D net
Tiling details UQC4157 *22222a (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} No s‑net Snet sqc9378 Snet sqc3227
Tiling details UQC4158 *22222b (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc420 Snet sqc9506 Snet sqc3719
Tiling details UQC4159 *22222a (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc9286 Snet sqc9507 Snet sqc3169
Tiling details UQC4160 *22222b (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc420 Snet sqc9711 Snet sqc3774
Tiling details UQC4161 *22222a (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} No s‑net Snet sqc9736 Snet sqc3522
Tiling details UQC4162 *22222b (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc3083 Snet sqc9512 Snet sqc420
Tiling details UQC4163 *22222b (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} No s‑net Snet sqc9714 Snet sqc420
Tiling details UQC4164 *22222b (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc3561 Snet sqc9511 Snet sqc420
Tiling details UQC4165 *22222a (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc9285 Snet sqc9510 Snet sqc3226
Tiling details UQC4166 *22222a (3,5,2) {4,8,4} {8.3.3.8}{8.8.3.3.8.8.3.3}{3.3.3.3} Snet sqc9477 Snet sqc9476 Snet sqc3596

Symmetry-lowered hyperbolic tilings