U-tiling: UQC4362
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1230 |
*22222 |
(4,4,2) |
{4,4,3,4} |
{7.7.7.7}{7.7.7.7}{7.4.7}{7.4.7.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc2835
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4,4} |
10 |
(4,4) |
G
|
False
|
|
sqc8804
|
|
Fddd |
70 |
orthorhombic |
{4,4,3,4} |
20 |
(4,5) |
D
|
False
|
|
sqc285
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
5 |
(4,4) |
Topological data
Vertex degrees | {4,4,3,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.7}{7.4.7.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<48.4:144:37 3 5 7 9 46 12 14 16 18 55 21 23 25 27 64 30 32 34 36 39 41 43 45 48 50 52 54 57 59 61 63 66 68 70 72 100 75 77 79 81 91 84 86 88 90 93 95 97 99 102 104 106 108 136 111 113 115 117 127 120 122 124 126 129 131 133 135 138 140 142 144,2 4 6 43 89 81 11 13 15 52 107 99 20 22 24 61 125 117 29 31 33 70 143 135 38 40 42 98 108 47 49 51 80 90 56 58 60 134 144 65 67 69 116 126 74 76 78 106 83 85 87 97 92 94 96 101 103 105 110 112 114 142 119 121 123 133 128 130 132 137 139 141,10 20 21 85 86 8 9 29 30 103 104 17 18 28 121 122 26 27 139 140 35 36 46 56 57 94 95 44 45 65 66 76 77 53 54 64 130 131 62 63 112 113 71 72 91 110 111 80 81 100 119 120 89 90 128 129 98 99 137 138 107 108 127 116 117 136 125 126 134 135 143 144:7 4 7 4 7 4 7 4 7 7 7 7,4 4 3 4 4 3 4 3 4 3 4 4 4 3 4 3 3 3 4 4> {(1, 123): 'tau2^-1*t1*tau3', (1, 125): 'tau2^-1', (0, 63): 't1', (1, 114): 'tau2*t1^-1*tau3^-1', (0, 54): 't1', (2, 49): 't3^-1', (1, 106): 't2^-1', (2, 40): 't2^-1', (1, 97): 't2', (2, 39): 't2^-1', (1, 88): 't3^-1', (2, 48): 't3^-1', (2, 12): 't2', (2, 13): 't2', (2, 136): 't2', (2, 137): 't2', (1, 79): 't3', (2, 4): 't3', (2, 128): 't2^-1', (0, 135): 'tau3*t1*tau2^-1', (2, 3): 't3', (2, 126): 't2^-1*tau1^-1*t3', (2, 127): 't2^-1', (0, 126): 'tau3^-1*t1^-1*tau2', (1, 60): 't1', (1, 62): 'tau3^-1', (2, 117): 't3*tau1^-1*t2^-1', (2, 118): 't3', (2, 119): 't3', (1, 116): 'tau2', (2, 109): 't3^-1', (2, 110): 't3^-1', (1, 33): 't1^-1', (1, 35): 'tau3', (2, 99): 'tau1', (2, 72): 'tau1'}