U-tiling: UQC4365
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1230 |
*22222 |
(4,4,2) |
{4,4,3,4} |
{7.7.7.7}{7.7.7.7}{7.4.7}{7.4.7.4} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3017
|
|
Fmmm |
69 |
orthorhombic |
{3,4,4,4} |
10 |
(4,4) |
G
|
False
|
|
sqc9162
|
|
Fddd |
70 |
orthorhombic |
{4,4,3,4} |
20 |
(4,5) |
D
|
False
|
|
sqc285
|
|
Pmmm |
47 |
orthorhombic |
{4,4,3,4} |
5 |
(4,4) |
Topological data
Vertex degrees | {4,4,3,4} |
2D vertex symbol | {7.7.7.7}{7.7.7.7}{7.4.7}{7.4.7.4} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<48.3:144:73 3 5 7 9 91 12 14 16 18 109 21 23 25 27 127 30 32 34 36 100 39 41 43 45 82 48 50 52 54 136 57 59 61 63 118 66 68 70 72 75 77 79 81 84 86 88 90 93 95 97 99 102 104 106 108 111 113 115 117 120 122 124 126 129 131 133 135 138 140 142 144,2 4 6 79 26 90 11 13 15 97 35 108 20 22 24 115 126 29 31 33 133 144 38 40 42 106 62 99 47 49 51 88 71 81 56 58 60 142 135 65 67 69 124 117 74 76 78 116 83 85 87 125 92 94 96 134 101 103 105 143 110 112 114 119 121 123 128 130 132 137 139 141,37 11 12 22 23 8 9 46 31 32 17 18 55 29 30 26 27 64 35 36 47 48 58 59 44 45 67 68 53 54 65 66 62 63 71 72 100 92 93 112 113 80 81 91 101 102 121 122 89 90 130 131 98 99 139 140 107 108 136 128 129 116 117 127 137 138 125 126 134 135 143 144:7 4 7 4 7 7 7 4 7 4 7 7,4 4 3 4 3 4 4 4 4 4 3 3 4 4 3 4 3 3 3 4> {(1, 123): 'tau2^-1', (2, 63): 't1', (0, 63): 'tau2', (2, 54): 't1', (1, 114): 'tau2', (0, 54): 'tau3^-1', (1, 33): 'tau3', (1, 107): 't2^-1', (1, 106): 't2^-1', (1, 97): 't2', (1, 98): 't2', (1, 124): 't3', (1, 89): 't3^-1', (0, 27): 'tau3', (0, 18): 'tau2^-1', (1, 80): 't3', (2, 136): 't2*tau1*t3^-1', (2, 137): 't2*tau1*t3^-1', (1, 79): 't3', (2, 139): 't2', (2, 135): 'tau3*t1*tau2^-1', (2, 129): 't2^-1', (2, 130): 't2^-1', (2, 126): 'tau3^-1*t1^-1*tau2', (2, 127): 't2^-1*tau1^-1*t3', (2, 120): 't3', (1, 60): 'tau3^-1', (2, 112): 't3^-1', (2, 110): 't3^-1*tau1*t2', (2, 100): 'tau1', (2, 101): 'tau1', (2, 102): 't2^-1', (2, 92): 'tau1^-1', (2, 91): 'tau1^-1', (2, 85): 't3^-1', (2, 75): 't3'}