U-tiling: UQC4429
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1438 |
*22222 |
(4,6,2) |
{4,4,4,4} |
{4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.... |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc441
|
|
Pmmm |
47 |
orthorhombic |
{4,4,4,4} |
5 |
(4,6) |
G
|
False
|
|
sqc9588
|
|
Fddd |
70 |
orthorhombic |
{4,4,4,4} |
20 |
(4,6) |
D
|
False
|
|
sqc3659
|
|
Cmma |
67 |
orthorhombic |
{4,4,4,4} |
10 |
(4,6) |
Topological data
Vertex degrees | {4,4,4,4} |
2D vertex symbol | {4.4.4.4}{4.6.6.4}{6.6.6.6}{6.6.6.6} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<49.1:160:21 3 24 25 7 9 30 31 13 34 35 17 19 40 23 27 29 33 37 39 61 43 64 65 47 49 70 71 53 74 75 57 59 80 63 67 69 73 77 79 121 83 124 125 87 89 130 131 93 134 135 97 99 140 141 103 144 145 107 109 150 151 113 154 155 117 119 160 123 127 129 133 137 139 143 147 149 153 157 159,2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126 128 130 132 134 136 138 140 142 144 146 148 150 152 154 156 158 160,91 82 83 5 86 87 48 49 20 111 102 103 15 106 107 58 59 131 122 123 25 126 127 68 69 40 151 142 143 35 146 147 78 79 101 112 113 45 116 117 60 81 92 93 55 96 97 141 152 153 65 156 157 80 121 132 133 75 136 137 85 118 119 110 95 108 109 120 105 115 125 158 159 150 135 148 149 160 145 155:4 6 4 6 4 6 4 6 4 6 4 6 4 6 4 6,4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4> {(2, 50): 't3^-1', (2, 40): 't2^-1', (2, 37): 't1^-1', (2, 38): 't1^-1', (2, 156): 'tau3', (2, 157): 'tau3*t1*tau2^-1', (2, 158): 'tau3*t1*tau2^-1', (2, 159): 't2*tau1*t3^-1', (2, 152): 'tau3', (2, 25): 'tau2^-1', (2, 26): 'tau2^-1', (2, 155): 'tau3', (2, 148): 'tau3^-1*t1^-1*tau2', (2, 149): 't2^-1*tau1^-1*t3', (2, 22): 'tau2^-1', (2, 151): 'tau3', (2, 145): 'tau3^-1', (2, 146): 'tau3^-1', (2, 147): 'tau3^-1*t1^-1*tau2', (2, 141): 'tau3^-1', (2, 142): 'tau3^-1', (2, 136): 'tau2^-1', (0, 140): 't2^-1', (2, 132): 'tau2^-1', (2, 135): 'tau2^-1', (2, 131): 'tau2^-1', (0, 123): 't3^-1', (0, 120): 't3^-1', (2, 119): 'tau1', (2, 10): 't2', (0, 124): 't3^-1', (0, 114): 't2^-1', (0, 113): 't2^-1', (0, 119): 't2^-1', (2, 109): 'tau1^-1', (0, 104): 't2', (0, 110): 't2^-1', (0, 109): 't2', (0, 99): 't3^-1', (2, 28): 't1^-1', (0, 103): 't2', (0, 90): 't3^-1', (0, 89): 't3', (0, 94): 't3^-1', (2, 90): 't3^-1', (0, 93): 't3^-1', (2, 27): 't1^-1', (2, 21): 'tau2^-1'}