U-tiling: UQC4532
h-net
1 record listed.
Image |
h-net name |
Orbifold symbol |
Transitivity (Vert,Edge,Face) |
Vertex Degree |
2D Vertex Symbol |
|
hqc1479 |
*22222 |
(4,5,2) |
{3,3,4,4} |
{6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} |
s-nets
3 records listed.
Surface |
Edge collapse |
Image |
s-net name |
Other names |
Space group |
Space group number |
Symmetry class |
Vertex degree(s) |
Vertices per primitive unit cell |
Transitivity (Vertex, Edge) |
P
|
False
|
|
sqc3656
|
|
Fmmm |
69 |
orthorhombic |
{4,3,4,3} |
12 |
(4,5) |
G
|
False
|
|
sqc9606
|
|
Fddd |
70 |
orthorhombic |
{3,3,4,4} |
24 |
(4,6) |
D
|
False
|
|
sqc452
|
|
Pmmm |
47 |
orthorhombic |
{3,4,4,3} |
6 |
(4,5) |
Topological data
Vertex degrees | {3,3,4,4} |
2D vertex symbol | {6.7.6}{6.7.7}{7.7.7.7}{7.7.7.7} |
Dual tiling | |
D-symbol
Genus-3 version with t-tau cuts labelled
<54.3:160:81 3 5 7 9 50 101 13 15 17 19 60 121 23 25 27 29 70 141 33 35 37 39 80 111 43 45 47 49 91 53 55 57 59 151 63 65 67 69 131 73 75 77 79 83 85 87 89 120 93 95 97 99 110 103 105 107 109 113 115 117 119 123 125 127 129 160 133 135 137 139 150 143 145 147 149 153 155 157 159,2 93 44 6 8 10 12 113 54 16 18 20 22 133 64 26 28 30 32 153 74 36 38 40 42 103 46 48 50 52 83 56 58 60 62 143 66 68 70 72 123 76 78 80 82 114 86 88 90 92 104 96 98 100 102 106 108 110 112 116 118 120 122 154 126 128 130 132 144 136 138 140 142 146 148 150 152 156 158 160,41 4 5 96 97 28 29 20 51 14 15 116 117 38 39 61 24 25 136 137 40 71 34 35 156 157 44 45 106 107 68 69 60 54 55 86 87 78 79 64 65 146 147 80 74 75 126 127 111 84 85 128 129 110 101 94 95 138 139 120 104 105 148 149 114 115 158 159 151 124 125 150 141 134 135 160 144 145 154 155:6 7 6 7 6 7 6 7 7 7 7 7,3 3 4 4 3 3 4 3 3 3 3 3 4 4 3 4 3 3 3 4 3 4 3 3> {(2, 60): 't1', (1, 123): 'tau2*t1^-1*tau3^-1', (2, 56): 't3^-1', (0, 60): 'tau3^-1', (1, 112): 't2^-1', (2, 55): 't3^-1', (2, 45): 't2^-1', (2, 46): 't2^-1', (0, 149): 'tau3^-1*t1^-1*tau2', (0, 39): 't1^-1', (1, 102): 't2', (2, 157): 't2', (2, 30): 't1^-1', (2, 159): 't2*tau1*t3^-1', (0, 30): 'tau3', (1, 92): 't3^-1', (0, 29): 't1^-1', (2, 149): 't2^-1*tau1^-1*t3', (2, 150): 'tau3*t1*tau2^-1', (2, 16): 't2', (0, 20): 'tau2^-1', (2, 147): 't2^-1', (1, 73): 't1', (2, 15): 't2', (2, 137): 't3', (2, 138): 't3', (2, 140): 'tau3^-1*t1^-1*tau2', (2, 5): 't3', (2, 6): 't3', (2, 128): 't3^-1', (2, 127): 't3^-1', (1, 63): 't1', (2, 118): 't2^-1', (2, 119): 'tau1', (1, 52): 't3^-1', (2, 108): 't2', (2, 109): 'tau1^-1', (0, 159): 'tau3*t1*tau2^-1', (1, 143): 'tau3^-1*t1^-1*tau2', (0, 70): 'tau2'}